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Preface

The history of mathematics at the Warsaw University of Technology goes back to 1826

when the Preparatory School for the Polytechnic Institute was founded thanks to the efforts

of Stanisław Staszic. Its first director became Kajetan Garbiński, a professor of mathematics.

The school was closed in 1831.

The Warsaw Polytechnic Institute named after Tsar Nicolas II was establihed in 1898.

Classes were conducted in Russian untill the outbreak of World War I. The Warsaw Univer-

sity of Technology started on its own in 1915. It was the first Polish technical university. All

this time at faculties of engineering there were divisions of mathematics which employed

famous professors including Georgij Voronoj, Kazimierz Żorawski, Witold Pogorzelski,

Stanisław Saks, Antoni Zygmund, Franciszek Leja, Władysław Nikliborc, Stefan Straszewicz

and Roman Sikorski.

In 1963 all the divisions of mathematics were joined together in order to establish the In-

stitute of Mathematics, which in 1975 became a part of the Faculty of Technical Physics and

Applied Mathematics. In 1999 the institute was transformed into the Faculty of Mathematics

and Information Sciences.

The aim of this monograph is to celebrate 20 years of the Faculty of Mathematics and

Information Science. We present a collection of research papers written by mathematicians

representing various generations, from assistant professors to full professors, currently em-

ployed at the faculty. They cover many areas of mathematics including algebraic structures,

analysis on manifolds, control theory, differential geometry, dynamical systems, general ge-

ometry, graph theory, mathematical statistics, numerical analysis, partial differential equa-

tions and stochastic analysis.
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Abstract: Multiple imputation is nowadays a generally accepted approach to statistical inference based

on incomplete data sets. Within this methodology it is standard to assess the quality of the estimation by

the Rubin estimator of the variance, which, when based on m imputations, has the form Ūm +(1+1/m)Bm.

Here Ūm is the average of imputation estimators of variance and Bm is the empirical variance of imputation

estimators. We consider the problem of estimation of variance of multiple imputation estimator in the

Bayesian Gaussian model with the Gaussian mean. We show that the Rubin estimator is inadmissible in

the class of estimators of the form ν2(α,β ) = αŪm + βBm, α,β ∈ R. We derive the optimal weights

α∗ and β∗, i.e. such that ν2(α∗,β∗) has the smallest MSE in this class of estimators. Since α∗ and β∗

are defined through complicated expressions we also derive approximate optimal estimators with simple

weights α∗∗ = 1
f , β∗∗ =− f

n(1− f ) , where f is the response rate and n is the original size of the sample. These

estimators outperform the Rubin estimator with respect to both the bias and the MSE. We also consider

the case of a non-informative prior. Then the Rubin estimator is unbiased, though it remains inadmissible.

Numerical experiments show that the performance of the optimal and the approximate optimal estimators

is rather similar, therefore we recommend to use simplified approximate weights.

Keywords: multiple imputation, Rubin estimator, Bayesian Gaussian model
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1. INTRODUCTION

The methodology of multiple imputation proposed in Rubin (1987) is nowadays one of the

most frequently used approaches to missing data problems. The basic idea lies in creating,

instead of one imputation sample, a larger number m of imputation samples. For each of such

samples an imputation estimator θ̂ (�)
Imp is designed according to the same rule, � = 1, . . . ,m.

The final estimator is the average θ̂MImp =
1
m ∑m

�=1 θ̂ (�)
Imp. Typically the variance of θ̂MImp is

estimated by the Rubin estimator:

ν2
Rub = Ūm +

(
1+ 1

m

)
Bm,

where Ūm = 1
m ∑m

�=1 V̂ (�)
Imp is the average of the imputation estimators V̂ (�)

Imp of the variance

of θ̂ (�)
Imp, � = 1, . . . ,m, and Bm = 1

m−1 ∑m
�=1

(
θ̂ (�)

Imp − θ̂MImp

)2
is the empirical variance of the

single imputation estimators. Though ν2
Rub was introduced in the Bayesian context, it is

widely used in applications for all kinds of data. In this aspect there is some criticism of

the Rubin estimator in the literature mostly concerned with analysis of its bias, see e.g. Fay

(1992), Kim (2004), Kim, Brick, Fuller, Kalton (2006), von Hippel (2013), Wang and Robins

(1998), Robins and Wang (2000), Nielsen (2003), von Hippel (2007), Hughes, Sterne and

Tilling (2016), as well as with the optimal choice of the number of imputations, see e.g. von

Hippel (2005), Graham, Olchowski, Gilreath (2007), Bodner (2008).

We analyze variance estimation when the procedure of multiple imputation is applied to

the mean X̄ = 1
n ∑n

i=1 Xi and the standard estimator of its variance, S2

n = 1
n(n−1) ∑n

i=1 (Xi− X̄)2.

We consider the Bayesian Gausian model with the Gaussian distribution for the mean and

unknown variance (the case of non-informative prior is also studied). We design a natural

imputation scheme based on conditional distribution of XRc |XR, where R and Rc are respec-

tively, observed and unobserved part of the sample X of size n. In this scheme we introduce

a class of the Rubin-type estimators of variance and investigate its properties. In particular,

we derive the optimal estimator within this class.

Multiple imputation for different Gaussian models have been already considered in the

literature, see e.g. von Hippel (2013a, b), Di Zio and Guarnera (2008). However, to the

10



Non-admissibility of the Rubin estimator of the variance. . .

best of our knowledge, no results on optimality of the variance estimation are available. In

general, it may not be feasible since it involves expressions for moments of the fourth order

which typically are hard to handle. But in some special models, as the Bayesian Gaussian

model with random Gaussian mean, we analyze here, such formulas are available. In this

model we study the optimal estimator of the variance of the multiple imputation estimator in

the class R= {αŪm +βBm, α,β ∈R} of the Rubin-type estimators. We derive optimal co-

efficients α and β and show that the Rubin estimator is not only biased but also inadmissible.

Precise expressions for optimal α and β , we derive, are quite complicated (though explicit)

functions of the number of imputations m, the original sample size n and the response rate f .

Therefore we also propose a simplified version of optimal coefficients of the form α∗∗ = 1
f

and β∗∗ = − f
n(1− f ) (for large n and m → ∞). We also compare asymptotic properties as

(m → ∞ and n is arbitrary) of the optimal estimator and the Rubin estimator.

The paper is organized as follows: In Section 2 basic properties of single imputation in

the Bayesian Gaussian scheme are derived. This gives a base for analyzing, in Section 3,

multiple imputation in this model. Section 4 is devoted to study properties of the Rubin-type

variance estimators. In particular, it contains our main results in which we give the optimal

and approximate optimal estimators both for informative and non-informative priors. We

also obtain optimal unbiased estimators of the Rubin-type in the model with non-informative

prior. Additionally, in this section we analyze properties of these estimators when number of

imputations is large. Section 5 is for conclusions. All proofs are in the Appendix.

2. SINGLE IMPUTATION

Let (X1, . . . ,Xn,M) be a random vector with conditional distribution of X = (X1, . . . ,Xn)

given M of the form

X|M =
(
N(M,σ2)

)⊗n
,

11
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that is, conditionally on M the components of X are iid normal with the mean M and (un-

known) variance σ2. Moreover, the distribution of M is normal N(μ, κσ2), where μ ∈ R

and κ > 0 are (known) hyperparameters. We refer to this model by GmG(μ,σ2,κ), the

"Gaussian-mean-Gaussian" model with parameters μ , σ2, κ .

Alternatively,

Xi = M+σZi, i = 1, . . . ,n,

where Z1, . . . ,Zn are iid standard normal random variables and (Z1, . . . ,Zn) and M (defined

above) are independent.

Let R ⊂ {1, . . . ,n}, #(R) = r, be the set of labels of those Xi’s which are observed, that is

XR = (Xi, i ∈ R) is the observed and XRc = (Xi, i ∈ Rc) is the missing part of the sample X.

For future reference by f = r/n we denote the response rate. Missing variables are replaced

by imputed ones X̃i, i ∈ Rc. Thus, the sample after imputation, XImp = (X̃1, . . . , X̃n), has the

form

X̃i =

⎧⎨⎩ Xi, i ∈ R,

X̃i, i ∈ Rc.

Hence the imputation versions of estimators X̄ and S2 are

X̄Imp =
1
n

n

∑
i=1

X̃i, S2
Imp =

1
n−1

n

∑
i=1

(X̃i − X̄Imp)
2.

It is well known that in GmG(μ,σ2,κ) model the conditional distribution of unobserved

XRc given observed XR is (n− r)-dimensional Gaussian

XRc |XR ∼ N
(

rκX̄R+μ
rκ+1 1Rc , σ2(IRc + κ

rκ+1 1Rc1T
Rc)
)
,

where X̄R = 1
r ∑i∈R Xi, 1Rc ∈ R

n−r is a vector of 1’s and IRc is an (n− r)× (n− r) identity

matrix.

Consequently, XRc has the representation

XRc = rκX̄R+μ
rκ+1 1Rc +σ W,

where

W = (Wi, i ∈ Rc) = Z+
√

κ
rκ+1 U 1Rc ,

12



Non-admissibility of the Rubin estimator of the variance. . .

Z = (Zi, i ∈ Rc) is a vector of iid standard normal random variables, U is a standard normal

random variable and (Z,U, XR) are jointly independent.

Since the standard unbiased estimator of σ2 based on the observed part of the sample is

S2
R = 1

r−1 ∑i∈R(Xi − X̄R)
2, provided r > 1, it is natural to impute missing values by

X̃ j =
rκX̄R+μ

rκ+1 +SRWj, j ∈ Rc. (1)

Consequently, the imputed sample has the form

XImp =
(

Xi, i ∈ R, rκX̄R+μ
rκ+1 +SRWj, j ∈ Rc

)
.

Theorem 1. In GmG(μ,σ2,κ) model with imputed values defined in (1) the imputation

version of the sample mean is

X̄Imp = f nκ+1
rκ+1 X̄R +(1− f )

( 1
rκ+1 μ +SRW̄

)
, (2)

where W̄ = Z̄ +
√

κ
rκ+1 U and Z̄ = 1

n−r ∑i∈Rc Zi.

The estimator X̄Imp is unbiased, i.e. E X̄Imp = EM = μ . Its variance is

Var X̄Imp =
σ2

n (nκ +1) (3)

and its MSE has the form

MSE X̄Imp = E(X̄Imp −M)2 = σ2

n

(
1+2 (n−r)κ

rκ+1

)
. (4)

Now we consider the imputation version of S2 = 1
n−1 ∑n

i=1 (Xi − X̄)2.

Theorem 2. In GmG(μ,σ2,κ) model with imputed values defined in (1) the imputation

version of the sample variance is

S2
Imp =

1
n−1

{
S2

R
(
r −1+(n− r −1)S2

Z
)
+ r(1− f )

(
X̄R−μ
rκ+1 −SRW̄

)2
}
. (5)

It is an unbiased estimator of σ2 and

Var S2
Imp =

2σ4

(n−1)2(r−1)

{
(r −1)(n− r −2)+n(n−2)+ τ2 (2(n−2)+3τ2)} , (6)

where τ2 = nκ+1
rκ+1 f .

13
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THE CASE OF NON-INFORMATIVE PRIOR

Consider now the special situation of non-informative prior distribution of M. This is

formally realized by taking the limit κ → ∞ in the previous considerations.

Therefore in the case of non-informative prior we impute the missing variables according

to the formula

X̃ j = X̄R +SR

(
Z j +

U√
r

)
, j ∈ Rc,

and thus the imputed sample has the form

XImp =
(

Xi, i ∈ R, X̄R +SR

(
Z j +

U√
r

)
, j ∈ Rc

)
.

Consequently, the imputation version of the sample mean, see (2), is

X̄Imp = X̄R +(1− f )SR

(
Z̄ + U√

r

)
.

The MSE of X̄Imp has the form, see (4),

MSE X̄Imp = E(X̄Imp −M)2 = σ2

r (2− f ).

Note that limκ→∞ τ2 = 1. Therefore, (5) yields

S2
Imp =

1
n−1S2

R

{
r −1+(n− r −1)S2

Z + r(1− f )
(

Z̄ + U√
r

)2
}

and (6) implies

Var S2
Imp =

2σ4

(n−1)2(r−1) {(r+1)(n− r)+(n−1)2}.

3. MULTIPLE IMPUTATION

In multiple imputation several, say m, imputed samples X(�)
Imp = (X̃ (�)

i , i = 1, . . . ,n),

l = 1, . . . ,m, are created in such a way that random vectors X̃(�)
Rc = (X̃ (�)

i , i ∈ Rc), �= 1, . . . ,m,

14
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are conditionally independent given the observed part of the sample XR = (Xi, i ∈ R) which is

common in all imputed samples. Having these samples defined we consider respective impu-

tation estimators of the sample mean, X̄ (�)
Imp and of the sample variance, (S(�)Imp)

2, �= 1, . . . ,m.

The multiple imputation estimator of the mean is

X̄MImp =
1
m

m

∑
�=1

X̄ (�)
Imp. (7)

Let us emphasize that this is the case of the proper multiple imputation procedure since

any Bayesian multiple imputation is proper if only the complete data estimator is the MLE -

see Nielsen (2003) - and this is the case of the empirical mean in the Gaussian model.

The Rubin estimator of the variance of X̄MImp is defined as

ν2
Rub = Ūm + m+1

m Bm,

where

Ūm = 1
mn

m

∑
�=1

(
S(�)Imp

)2
(8)

and

Bm = 1
m−1

m

∑
�=1

(
X̄ (�)

Imp − X̄MImp

)2
. (9)

In GmG(μ,σ2,κ) model imputed samples have the form

X(�)
Imp =

(
Xi, i ∈ R, rκX̄R+μ

rκ+1 +SRW (�)
j , j ∈ Rc

)
, �= 1, . . . ,m, (10)

with

W (�)
j = Z(�)

j +
√

κ
rκ+1U (�), j ∈ Rc,

where Z(�)
j , j ∈ Rc,U (�), �= 1, . . . ,m, are iid standard normal random variables.

It is easy to see that

W̄ (�) = Z̄(�) +
√

κ
rκ+1U (�), �= 1, . . . ,m,

are iid normal random variables with zero mean and variance τ̃2 = nκ+1
(rκ+1)(n−r) .

15
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Theorem 3. In GmG(μ,σ2,κ) model with imputation defined in (10), the multiple imputa-

tion estimator of M has the form

X̄MImp = f nκ+1
rκ+1 X̄R +(1− f )

(
1

rκ+1 μ +SR
¯̄W
)
, (11)

where ¯̄W = 1
m ∑m

�=1 W̄ (�).

Statistics Bm and Ūm defined in (9) and (8), respectively, assume the form:

Bm = (1− f )2 S2
R S2

W̄ (12)

and

Ūm = 1
n(n−1)

{
S2

R
[
r −1+(n− r −1)S̄2

Z
]
+ r(1− f )

(
X̄R−μ
rκ+1 −SR

¯̄W
)2

+ r
1− f

m−1
m Bm

}
, (13)

where

S̄2
Z = 1

m

m

∑
�=1

S2
Z(�) and S2

W̄ = 1
m−1

m

∑
�=1

(
W̄ (�)− ¯̄W

)2
.

Theorem 4. The estimator X̄MImp is ubiased for M and its MSE has the form

MSE X̄MImp = E(X̄MImp −M)
2
=
(

nκ+ f
nκ+1 +

1− f
m

)
τ2σ2

r . (14)

Moreover,

EŪm = σ2

n , (15)

and

EBm = (1− f ) τ2σ2

r (16)

and the Rubin estimator ν2
Rub is biased with the bias

Bν2
Rub = Eν2

Rub −MSE X̄MImp =
2(1− f )
nκ+1

τ2σ2

r . (17)

Remark 5. Note that the relative bias of the Rubin estimator has the form

Bν2
Rub

MSE X̄MImp
= 2(1− f )

nκ+ f+ 1
m (1− f )(nκ+1)

< 2(1− f )
nκ+ f . (18)

Therefore, in the case of non-informative prior, that is when κ → ∞, we see that the Rubin

estimate ν2
Rub is unbiased for MSE X̄MImp which in this case (i.e. when κ → ∞) assumes the

form

MSE X̄MImp = E(X̄MImp −M)
2
= σ2

r

(
1+ 1− f

m

)
.

16
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Note also that 2(1− f )
nκ+ f , the right-hand side of (18), is the supremum over m of the relative

bias for n, f and κ given (actually, it is its limit when m → ∞). For δ < 2(1− f )
nκ+ f it follows that

if the number of imputed samples m satisfies

m < δ (1− f )(nκ+1)
2(1− f )−δ (nκ+ f )

then the relative bias remains below the level δ .

4. OPTIMAL RUBIN-TYPE ESTIMATOR OF THE

VARIANCE OF MULTIPLE IMPUTATION ESTIMATOR

In this section we consider estimator of the MSE of X̄MImp in the class R of generalized

Rubin estimators of the form

ν2(α,β ) = αŪm +βBm, α, β ∈ R. (19)

Note that the Rubin estimator ν2
Rub belongs to class R with α = 1 and β = 1+ 1

m .

Observe that the coefficients of the Rubin estimator do not depend on the response rate f .

As it will be shown, the optimal coefficients do depend on f . In this context it is worth to

mention that Bjørnstad (2007) (accompanied by a discussion in Skinner (2007)) suggested

a modification of the Rubin estimator ν2
Rub by incorporating f in the coefficient β of Bm as

follows: ν2
B jo = ν2(1, 1

1− f +
1
m). Actually, a more general form β = k+ 1

m was considered

and then the approximate condition Var θ̂MImp ≈ EŪm +(k+ 1
m)EBm allowed to conclude

that k = 1
1− f . Nevertheless, the optimality of ν2

B jo was not analyzed there. For a comparison

of ν2
B jo with the Rubin estimator see Laaksonen (2016a,b).

The aim of this section is to find optimal weights α,β , i.e. such that the estimator (19)

has the smallest MSE in the class R. We will also compare the optimal estimator in the class

R with the Rubin estimator ν2
Rub and the Bjørnstad estimator ν2

B jo.

The basic auxiliary characteristics for this kind of study are variances and covariances of

Ūm and Bm.

17
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Proposition 6. In GmG(μ,σ2,κ) model

VarŪm = 2σ4

(r−1)n2(n−1)2

[
(r −1)

(
1− τ2)(1+ 2−m

m τ2)+ (n−2+ τ2)2
+

(r+1)(n−r−1+τ4)
m

]
,

(20)

Var Bm = 2σ4τ4(1− f )2

r2(r−1)

(
1+ r+1

m−1

)
, (21)

and

Cov(Ūm,Bm) =
2σ4τ2(1− f )

r(r−1)n(n−1)

[
n−2+ τ2 (1+ r+1

m

)]
. (22)

Remark 7. From (20) - (22) and (15), (16) it follows that⎡⎢⎢⎢⎣
EŪ2

m

EB2
m

EŪmBm

⎤⎥⎥⎥⎦= σ4(r+1)
(r−1)n2

⎡⎢⎢⎢⎣
a

b

c

⎤⎥⎥⎥⎦ , (23)

where

a = 1+ 2n(1− f )
(n−1)2m +

2(1−τ2)
(

2
(

r+1−n− r−1
m

)
+
( r−3

m −r
)
(1+τ2)

)
(r+1)(n−1)2 ,

b = τ4(1− f )2

f 2
m+1
m−1 ,

c = τ2(1− f )
f

(
1+ 2τ2

m(n−1) +
2(τ2−1)

(r+1)(n−1)

)
.

Theorem 8. Let

α∗ =
2n(r−1)
r(r+1)

A2A4
A1

and β∗ =
2(r−1)

(n−1)2(r+1)(1− f )τ2
A3A4

A1
, (24)

where

A1 = a m+1
m−1 −

(
1+ 2τ2

m(n−1) +
2(τ2−1)

(r+1)(n−1)

)2
, (25)

A2 =
1

m−1 − τ2

m(n−1) +
1−τ2

(r+1)(n−1) , (26)

A3 =
τ2−r

m +(1− τ2)

(
n
m +

2r+1−n−2 r−1
m +

( r−3
m −r

)
(1+τ2)

r+1

)
, (27)

A4 = τ2 + (1− f )τ2

m − (1− τ2) f . (28)

Then ν2(α∗,β∗) has the smallest MSE among the estimators of the MSE of X̄MImp from

the class R.
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Fig. 1. Theoretical and empirical RMSE of the optimal estimator ν2(α∗,β∗) and the Rubin estimator

ν2
Rub. Here m = 5, n = 100, σ2 = 1, μ = 0 and κ = 1. The empirical versions are computed from 100

repetitions

The optimal MSE is

MSEν2(α∗,β∗) = σ4

r2 A4
(
A4 −α∗ f −β∗(1− f )τ2) . (29)

Remark 9. A comparison between the RMSE’s (root MSE) of the optimal estimator

ν2(α∗,β∗) and the Rubin estimator ν2
Rub is illustrated in Fig. 1 (with a close-up for high

response rates in Fig. 2). The difference is larger for smaller response rates.

4.1. THE CASE OF NON-INFORMATIVE PRIOR

The non-informative prior is the case when κ → ∞ (which is equivalent to τ2 → 1). The

model we consider is denoted as GmG(μ,σ2,∞). Then the optimal coefficients α∗,∞ and
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Fig. 2. Close-up of Fig. 1

β∗,∞ of the estimator ν2(α,β ) ∈ R are obtained by taking respective limits of α∗ and β∗

defined in (24)–(28) of Theorem 8.

Theorem 10. Consider GmG(μ,σ2,∞) model. Let

α∗,∞ = nm−2m+1
f (m−1) K and β∗,∞ = − r−1

(1− f )(n−1)K, (30)

where

K =
2(r−1)

(
1+

1− f
m

)
m(n−1)(r+1)A1,∞

and

A1,∞ = lim
κ→∞

A1 =
(

1+ 2(n−r)
m(n−1)2

)
m+1
m−1 −

(
1+ 2

m(n−1)

)2

Then, in the case of non-informative prior, ν2(α∗,∞,β∗,∞) is the optimal estimator of the

MSE of X̄MImp in the class R. The MSE of this estimator is

MSEν2(α∗,∞,β∗,∞) = σ4

r2

(
1+ 1− f

m

)(
1+ 1− f

m −α∗,∞ f −β∗,∞(1− f )
)
. (31)
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Remark 11. For n → ∞ in such a way that the response rate f remains constant we obtain

lim
n→∞

α∗,∞ =
1+

1− f
m

f ,

lim
n→∞

nβ∗,∞ = −
(m−1) f

(
1+

1− f
m

)
m(1− f ) .

Thus for large sample size n and small m we can use an approximate optimal version of the

estimator of the MSE of the form

ν2(α∗,m, β∗,m), (32)

where approximate (for large n) values of α∗,∞ and β∗,∞ are

α∗,m =
1+

1− f
m

f and β∗,m = −
(m−1) f

(
1+

1− f
m

)
nm(1− f ) .

Taking m → ∞ in α∗,m and β∗,m we get

α∗∗ = 1
f and β∗∗ = − f

n(1− f ) .

Thus, if additionally number of imputations m is large one may use a simplified version of

the optimal estimator of the form

ν2(α∗∗, β∗∗). (33)

As it is seen in Fig. 3 and Fig. 4 below, both approximate estimators of the MSE,

ν2(α∗,m, β∗,m) and ν2(α∗∗, β∗∗), are close to the optimal one and perform much better than

Rubin’s estimator ν2
Rub = ν2(1,1+1/m). The same holds true for the estimator ν2(α1,β1),

where α1 = 1/ f and β1 = ( 1
f − 1

1− f )
1
n designed as simplified approximate optimal for the or-

dinary (non-Bayesian) Gaussian model in Wesołowski (2017). As emphasized in Van Buuren

(2018), p. 72, the 1
m part of the β coefficient in ν2

Rub "is critical to make multiple imputa-

tion work at low levels of m". However, as we see in Fig. 3, performance of ν2
Rub for low m

(Fig.3 is for m = 5) is much worse than that of the optimal or approximate optimal estima-

tors. Actually, performance of ν2
Rub for low m is even worse than that for high m (Fig. 4 is

for m = 100). The Bjørnstad estimator, ν2
B jo, except of very small response rates, performs

poorly for both low and high m.
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Fig. 3. Ratios (the case of low value of m): the RMSE of the optimal estimator ν2(α∗,β∗) divided by

the RMSE of ν2(α∗∗,β∗∗), ν2
Rub, ν2(α∗,m,β∗,m), ν2(α1,β1) and ν2

B jo, respectively. The computations

were done for m = 5, n = 100, σ2 = 1, κ = ∞

4.2. UNBIASED ESTIMATORS FOR NON-INFORMATIVE PRIOR

Note that it follows from the formula for the bias of Rubin’s estimator, see (17), that if

κ → ∞, that is in the non-informative case, ν2
Rub is unbiased. We have already seen that this

estimator is non-admissible in the class R.

Now we address a natural question of optimality of the Rubin estimator among unbiased

estimators of the class R, i.e. we are interested in the class

Ru = {α Ūm +βBm : such that αEŪm +βEBm = MSE X̄MImp} ⊂ R.

As it is shown below, Rubin’s estimator ν2
Rub is non-admissible also in Ru.
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Fig. 4. Ratios (the case of high value of m): the RMSE of the optimal estimator ν2(α∗,β∗) divided by

the RMSE of ν2(α∗∗,β∗∗), ν2
Rub, ν2(α∗,m,β∗,m), ν2(α1,β1) and ν2

B jo, respectively. The computations

were done for m = 100, n = 100, σ2 = 1, κ = ∞

Theorem 12. We consider the model GmG(μ,σ2,∞). Let

α∗,u = 1
f

(
1+ 1− f

m

)
(m(n−2)+1)(n−1)

m(n−1)2−(m−1)(n+r−2) (34)

and

β∗,u = − 1
1− f

(
1+ 1− f

m

)
(r−1)(m−1)

m(n−1)2−(m−1)(n+r−2) . (35)

Then ν2(α∗,u,β∗,u) is optimal estimator of the MSE of the X̄MImp in the class Ru.

Remark 13. Note that in the case of unbiased estimators, simplified versions of

ν2(α∗,u, β∗,u) for large n and large both n and m are exactly the same as the estimators

given in (32) and (33), respectively. It follows from the fact that the limits of α∗,u and nβ∗,u

as n → ∞ and then as also m → ∞ are exactly the same as in Remark 11.

Proposition 14. The MSE of the Rubin estimator ν2
Rub has the form

MSEν2
Rub =

2σ4

r2(r−1)

((
1+ 1− f

m

)2
+A
)
, (36)
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Fig. 5. Ratios: standard deviation of optimal unbiased estimator ν2(α∗,u,β∗,u) divided by that of

the Rubin estimator ν2
Rub for different choices of m = 3,5,10,50. The computations were done for

n = 100, σ2 = 1

where

A = (r+1)(1− f )
m

[
r f

(n−1)2 +
(m+1)2(1− f )

m(m−1) +2 (m+1) f
m(n−1)

]
.

In Fig.5 we compare standard deviations of ν2
Rub and ν2(α∗,u,β∗,u) for traditional choices

for m, that is m = 3,5,10 and the higher one, m = 50. We see that the larger m gets, the

closer standard deviation of the Rubin estimator to the one of the optimal unbiased estima-

tor. Actually, as it is proved in the next result, asymptotically (as m → ∞) they are identical.

Nevertheless, the optimal estimator ν2(α∗,∞,β∗,∞) (the one without the unbiasedness con-

straint) is asymptotically strictly more efficient than ν2
Rub.

Theorem 15. If r > 1 then

lim
m→∞

Var ν2(α∗,u,β∗,u) = lim
m→∞

Var ν2
Rub =

2σ4

r2(r−1) . (37)
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Moreover,

lim
m→∞

MSEν2(α∗,∞,β∗,∞)
Var ν2

Rub
= r−1

r+1 < 1. (38)

5. CONCLUSIONS

In this paper we analyzed the multiple imputation methodology in the Bayesian Gaussian

model with the Gaussian mean GmG(μ,σ2,κ). We derived optimal weights α∗ and β∗ such

that the estimator ν2(α∗,β∗) of MSE X̄MImp in the class R of Rubin-type estimators of the

form

ν2(α,β ) = αŪm +βBm, α,β ∈ R,

is optimal, i.e. it has the minimal MSE. This estimator outperforms the popular Rubin esti-

mator, ν2
Rub = ν2(1,(m+1)/m), with respect to both the bias and the MSE. Since the Rubin

estimator is widely used in practice it is worth to emphasize that, in view of the obtained

results, this estimator is inadmissible (at least in the Bayesian Gaussian GmG(μ,σ2,κ)-

models). Similar situation holds for optimal unbiased estimators for non-informative prior,

that is in GmG(μ,σ2,∞) model in which the Rubin estimator is unbiased. Nevertheless, at

least in the case of large m both the Rubin estimator and the optimal unbiased one have the

same asymptotic MSE. Since the formulas for the optimal coefficients α∗, β∗ and α∗,u, β∗,u

(u stands for the unbiased estimator) are quite complicated we propose their approximate

α∗,m, β∗,m or simplified α∗∗, β∗∗ versions. Numerical experiments show that performances

of the optimal, approximate optimal and simplified optimal estimators are comparable under

the model with non-informative prior. Therefore, in practice, when the extraordinary pre-

cision is not neccessary, we recommend to use non-informative prior with either simplified

(when both m and n are large) or approximate (when n is large only) Rubin-type estimators.
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APPENDIX

1. PROOF OF THEOREM 1

Proof. The form of the imputation estimator as given in (2) follows immediately from the

way, (1), we impute variables. Note that in the GmG(μ,σ2,κ) model Xi = M + σZi,

i ∈ R, where Zi, i ∈ R, are iid standard normal random variables and (Zi, i ∈ R) and M

are independent. Therefore, S2
R = σ2

r−1 ∑i∈R (Zi − Z̄)2 and X̄R = M+σ Z̄ are independent too.

Consequently,

Var X̄Imp =
(
(nκ+1) f

rκ+1

)2
Var X̄R +(1− f )2

Var SRW̄ .

Moreover,

Var X̄R = Var M+σ2
Var Z̄ = σ2

r (rκ +1). (39)

Note also that W̄ ∼ N
(
0, τ̃2), where

τ̃2 = nκ+1
(n−r)(rκ+1) =

τ2

r(1− f ) (40)

and thus

Var SRW̄ = ES2
REW̄ 2 = σ2τ̃2.

Therefore,

Var X̄Imp =
(
(nκ+1) f

rκ+1

)2 σ2

r (rκ +1)+(1− f )2 σ2 nκ+1
(n−r)(rκ+1) .

After simplifications one gets (3).

Note that

MSE X̄Imp = E((X̄Imp − μ)− (M − μ))2 = Var X̄Imp +Var M −2Cov(X̄Imp,M).

Since

Cov(X̄Imp,M) = (nκ+1) f
rκ+1 Cov(X̄R,M) = (nκ+1) f

rκ+1 Var M

by (3) we get

MSE X̄Imp =
σ2

n (nκ +1)+σ2κ −2 (nκ+1) f
rκ+1 σ2κ.

After simplifications we arrive at (4).
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2. PROOF OF THEOREM 2

Proof. By (1) directly from the definition of S2
Imp we have

(n−1)S2
Imp = ∑

i∈R
(Xi − X̄Imp)

2
+ ∑

i∈Rc

(
rκX̄R−μ

rκ+1 +SRWi − X̄Imp

)2
=: I1 + I2.

Using (2) for X̄Imp, after computation, we get

I1 = (r −1)S2
R + r(1− f )2

(
X̄R−μ
rκ+1 −SRW̄

)2
,

I2 = (n− r −1)S2
RS2

Z + r f (1− f )
(

X̄R−μ
rκ+1 −SRW̄

)2
,

where for I2 we use additonally the fact that S2
W = S2

Z . Thus (5) follows.

Note also that

ES2
R = σ2, ES2

Z = 1.

Moreover, X̄R, SR and W̄ are independent and thus

E

(
X̄R−μ
rκ+1 −SRW̄

)2
= E

(
X̄R−μ
rκ+1

)2
+ES2

rW̄ 2. (41)

By (39) we get

E

(
X̄R−μ
rκ+1

)2
= 1

(rκ+1)2Var X̄R = σ2

r(rκ+1) .

Since XR and W̄ are independent

ES2
RW̄ 2 = τ̃2

ES2
R. (42)

Consequently, due to (40), we see that (5) implies

ES2
Imp =

σ2

n−1

(
n−2+n f (1− f )

(
1

r(rκ+1) + τ̃2
))

= σ2,

and thus S2
Imp is unbiased for σ2.

To prove (6) we first note that S2
Imp can be rewritten as

(n−1)S2
Imp = S2

R
(
r −1+(n− r −1)S2

Z +n f (1− f )W̄ 2)
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+r(1− f )
(

X̄R−μ
rκ+1

)2
−2r(1− f ) X̄R−μ

rκ+1 SRW̄ =: A1 +A2 +A3.

Since X̄R and the random vector (S2
R, S2

Z, W̄ ) are independent it follows that Cov(A1,A2) = 0.

Moreover, since additionally E(X̄R − μ) = 0 = E(X̄R − μ)3 it follows that Cov(A1,A3) = 0

= Cov(A2,A3). Therefore

(n−1)2
Var S2

Imp =V1 +
(

r(1− f )
rκ+1

)2( V2
(rκ+1)2 +4V3

)
, (43)

where V1 = Var S2
RY with

Y = r −1+(n− r −1)S2
Z + r(1− f )W̄ 2, (44)

V2 = Var (X̄R − μ)2 and V3 = Var (X̄R − μ)SRW̄ .

Note that for independent random variables A, B we have

Var AB = Var A Var B+(EA)2
Var B+Var A(EB)2. (45)

Consequently,

V1 = Var S2
RVarY +(ES2

R)
2
VarY +Var S2

R (EY )2.

Since r−1
σ2 S2

R has the χ2(r −1) distribution we have

Var S2
R = 2

r−1σ4. (46)

Moreover, see (42) and note that r(1− f )τ̃2 = τ2,

EY = r −1+(n− r −1)ES2
Z + r(1− f )EW̄ 2 = n−2+ τ2. (47)

Since S2
Z and W̄ are independent

VarY = (n− r −1)2
Var S2

Z + r2(1− f )2
VarW̄ 2.

Note that (n− r −1)S2
Z has the χ2(n− r −1) distribution. Consequently,

Var S2
Z = 2

n−r−1 .

Since W̄ ∼ N(0, τ̃2) it follows that VarW̄ 2 = 2τ̃4. Summing up we get

VarY = 2
(
n− r −1+ τ4) . (48)
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Consequently,

Var S2
RVarY = 4σ4

r−1

(
n− r −1+ τ4) , (ES2

R)
2
VarY = 2σ4 (n− r −1+ τ4)

and

Var S2
R (EY )2 = 2σ4

r−1

(
n−2+ τ2)2

.

Therefore, combining the first two terms of V1, we get

V1 =
2σ4(r+1)

r−1

(
n− r −1+ τ4)+ 2σ4

r−1

(
n−2+ τ2)2

.

Since X̄R ∼ N(μ,σ2 rκ+1
r ) we get

V2 = 2σ4 ( rκ+1
r

)2
. (49)

By independence of X̄R, S2
R, W̄ we conclude that

V3 = Var X̄RES2
R τ̃2 = rκ+1

r σ4 τ̃2.

Finally, plugging the formulas for V1, V2 and V3 into (43) we can write

(n−1)2
Var S2

Imp

= 2σ4
{

(r+1)(n−r−1)+(n−2)2+2(n−2)τ2+3τ4

r−1 +(1− f )2
(

1
(rκ+1)2 +2 rτ̃2

rκ+1 + r2τ̃4
)}

.

Plugging τ̃2 as given in (40) we get

(1− f )2
(

1
(rκ+1)2 +2 rτ̃2

rκ+1 + r2τ̃4
)
= 1.

Hence, after some algebra, (6) follows.

3. PROOF OF THEOREM 3

Proof. Each of imputed samples (10) gives rise to the imputation estimator

X̄ (�)
Imp = f nκ+1

rκ+1 X̄R +(1− f )
(

μ
rκ+1 +SRW̄ (�)

)
, �= 1, . . . ,m,
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and thus (11) follows immediately from (7).

Plugging

X̄ (�)
Imp − X̄MImp = (1− f )SR

(
W̄ (�)− ¯̄W

)
, �= 1, . . . ,m,

into (9) we get (12).

For �= 1, . . . ,m, the imputation version of S2 statistic,
(

S(�)Imp

)2
(see (5)), satisfies

(n−1)
(

S(�)Imp

)2
= S2

R

(
r −1+(n− r −1)S2

Z(l) + r(1− f )
(

W̄ (�)
)2
)

+ r(1− f )
(

X̄R−μ
rκ+1

)2
−2r(1− f ) X̄R−μ

rκ+1 SRW̄ (�).

Taking the mean according to (8) we get

n(n−1)Ūm = S2
R

[
r −1+(n− r −1)S̄2

Z + r(1− f )
(

m−1
m S2

W̄ + ¯̄W 2
)]

+ r(1− f )
(

X̄R−μ
rκ+1

)2
−2r(1− f ) X̄R−μ

rκ+1 SR
¯̄W.

Thus (13) follows.

4. PROOF OF THEOREM 4

Proof. The unbiasedness of X̄ (�)
Imp, for any � = 1, . . . ,m, implies immediately that X̄MImp is

unbiased.

Note that MSE X̄MImp can be computed as follows:

1
m2E

(
m

∑
�=1

(X̄ (�)
Imp −M)

)2

= 1
m MSE X̄Imp +

m−1
m Cov

(
X̄ (1)

Imp −M, X̄ (2)
Imp −M

)
.

From (2) we conclude that

Cov
(

X̄ (1)
Imp −M, X̄ (2)

Imp −M
)
= Var(τ2X̄R −M)

+(1− f )Cov
(

τ2X̄R −M,SR(W̄ (1) +W̄ (2))
)
+(1− f )2

Cov
(

SRW̄ (1), SRW̄ (2)
)
.
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Since (SR,W̄ ) and (X̄ ,M) are independent the first covariance in the line above is zero.

Moreover, independence of SR, W̄ (1) and W̄ (2) together with the fact that EW̄ (�) = 0, �= 1,2,

implies that the second covariance also vanishes.

Since X̄R = M + σ Z̄R, where Zi, i ∈ R, are iid standard normal random variables and

(Zi)i∈R and M are independent we conclude that

Cov
(

X̄ (1)
Imp −M, X̄ (2)

Imp −M
)
= Var

(
τ2 σ Z̄R +(τ2 −1)M

)
=
(
(nκ+1) f

rκ+1

)2 σ2

r +
(

1− f
rκ+1

)2
κσ2 = σ2 nκ+ f

n(rκ+1) .

This formula together with (4), after computation, gives (14).

Since, for any �= 1, . . . ,m,
(

S(�)Imp

)2
is unbiased for σ2, see Theorem 2, we get (15).

Similarly, (12) implies EBm = (1− f )2ES2
RES2

W̄ = (1− f )2σ2τ̃2 and thus (16) follows

from (40).

Using (14), (15), (16) and (40) we see that the Rubin estimate of the variance of X̄MImp is

biased with the bias

Eν2
Rub −MSE X̄MImp =

σ2

n + m+1
m (1− f )2τ̃2σ2 −

(
nκ+ f

n(rκ+1) +
(1− f )2τ̃2

m

)
σ2

= σ2

n

(
1+ (1− f )(nκ+1)−nκ− f

rκ+1

)
.

After calculation we get the formula (17).

5. PROOF OF PROPOSITION 6

Proof. From the representation (13) we get

VarŪm = 1
n2(n−1)2

{
Var S2

RȲ + r2(1− f )2
(
Var

(
X̄R−μ
rκ+1

)2
+4Var X̄R−μ

rκ+1 SR
¯̄W
)}

,

where

Ȳ = r −1+(n− r −1)S̄2
Z + r(1− f )

(
¯̄W 2 + m−1

m S2
W̄

)
.
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Since X̄R, S2
R, Ȳ , ¯̄W are (jointly) independen, E ¯̄W = 0 and E X̄R = μ it follows that all the

covariances expected to be in VarŪm are equal zero.

Note that Ȳ = 1
m ∑m

�=1 Y (�), where Y (1), . . . ,Y (m) are iid copies of Y defined in (44) (with

Z and W̄ changed into Z(�) and W̄ (�), respectively). Thus Y (�) d
= Y , � = 1, . . . ,m. Hence

EȲ = EY and VarȲ = 1
m VarY . Consequently, (45) yields

Var S2
RȲ = 1

mES4
RVarY +Var S2

R (EY )2.

Note that ES4
R = Var S2

R +(ES2
R)

2 = 2σ4

r−1 +σ4 = σ4(r+1)
r−1 . Therefore (47) and (48) yield

Var S2
RȲ = 2σ4

r−1

[(
n−2+ τ2)2

+ r+1
m

(
n− r −1+ τ4)] .

Moreover, due to (49)

Var
(

X̄R−μ
rκ+1

)2
= 2σ4

(r(rκ+1))2 .

For the third term in the expression for VarŪm we obtain, see (39) and (40),

Var X̄R−μ
rκ+1 SR

¯̄W = Var X̄R−μ
rκ+1 ES2

RE
¯̄W 2 = σ4τ2

mr2(rκ+1)(1− f ) .

Combining the three terms, after some algebra we arrive at (20).

To compute the variance of Bm we use (12) and thus we get

Var Bm = (1− f )4(Var S2
RVar S2

W̄ +Var S2
R (ES2

W̄ )2 +(ES2
R)

2
Var S2

W̄ ).

Since
(m−1)S2

W̄
τ̃2 has the chi-square distribution with m − 1 degrees of freedom it follows

that, see (40), ES2
W̄ = τ̃2 and

Var S2
W̄ = 2

m−1 τ̃4. (50)

Consequently,

Var Bm = (1− f )4
(

2σ4

r−1

( 2
m−1 τ̃4 + τ̃4)+σ4 2

m−1 τ̃4
)
= 2(1− f )4σ4τ̃4 r+m

(r−1)(m−1) .

To compute Cov(Ūm,Bm) we first note, that

Cov(Ūm,Bm) =
(1− f )2

n(n−1)Cov(S2
RȲ , S2

RS2
W̄ ).
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since similarly as in the case of VarŪm remaining covariances are zero. Now, from the

definition of Ȳ we have

Cov(S2
RȲ , S2

RS2
W̄ ) = (r −1)Cov(S2

R,S
2
RS2

W̄ )+(n− r −1)Cov(S2
RS̄2

Z,S
2
RS2

W̄ )

+ r(1− f )m−1
m Var S2

RS2
W̄ + r(1− f )Cov(S2

R
¯̄W 2,S2

RS2
W̄ ).

Now we compute three covariances and the variance of the above formula. First we note that

independence of S2
R and S2

W̄ implies

Cov(S2
R,S

2
RS2

W̄ ) = (Var S2
R)ES2

W̄ = 2σ4

r−1 τ̃2.

For the second covariance Cov(S2
RS̄2

Z,S
2
RS2

W̄ ) we first note that S2
W̄ = S2

Z̄ + 2
√

κ
rκ+1 S2

Z̄,U +

κ
rκ+1S2

U , where S2
Z̄ = 1

m−1 ∑m
l=1 (Z̄

(l) − ¯̄Z)2, S2
Z̄,U = 1

m−1 ∑m
l=1 (Z̄

(l) − ¯̄Z)(U (l) − Ū) and

S2
U = 1

m−1 ∑m−1
l=1 (U (l) − Ū)2. That is, S2

W̄ is a function of (U (l), l = 1, . . . ,m) and

(Z̄(l), l = 1, . . . ,m), while S̄2
Z is a function of ((S(l)Z )2, l = 1, . . . ,m). Consequently, S2

R, S̄2
Z

and S2
W̄ are independent and thus

Cov(S2
RS̄2

Z,S
2
RS2

W̄ ) = Var S2
RE S̄2

Z ES2
W̄ = 2σ4

r−1 τ̃2.

In view of (12) and (21) it follows immediately that

m−1
m Var S2

RS2
W̄ = 2σ4τ̃4

r−1

(
1+ r

m

)
.

To complete the computation of Cov(Ūm, Bm) we note that independence of S2
R, ¯̄W and

S2
W̄ implies

Cov(S2
R

¯̄W 2,S2
RS2

W̄ ) = Var S2
RE

¯̄W 2
ES2

W̄ = 2σ4τ̃4

m(r−1) .

Therefore,

Cov(Ūm,Bm) =
(1− f )2

n(n−1)

(
2σ4τ̃2 +(n− r −1)2σ4τ̃2

r−1 +n f (1− f )2σ4τ̃4

r−1

(
1+ r+1

m

))
.

And thus (22) follows.
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6. PROOF OF THEOREM 8

Proof. Since

MSE(ν2(α,β )) = Var(ν2(α,β ))+B
2(ν2(α,β )) (51)

= α2
VarŪm +β 2

Var Bm +2αβCov(Ūm, Bm)+(α EŪm +β EBm −MSE X̄MImp)
2

we have to minimize the function

T (α, β ) = α2
EŪ2

m +β 2
EB2

m +2αβEŪmBm −2αEŪm MSE X̄MImp

−2βEBm MSE X̄MImp +(MSE X̄MImp)
2.

Therefore we differentiate T with respect to α and β to find the stationary point which

gives the minimum. Differentation leads to the system of linear equations

α EŪ2
m +β EŪmBm = EŪm MSE X̄MImp, (52)

α EŪmBm +βEB2
m = EBm MSE X̄MImp. (53)

Therefore,

α =
MSE X̄MImp(EŪmEB2

m−EBmEŪmBm)
EŪ2

mEB2
m−(EŪmBm)

2 , (54)

β =
MSE X̄MImp(EBmEŪ2

m−EŪmEŪmBm)
EŪ2

mEB2
m−(EŪmBm)

2 . (55)

Consequently,

EŪ2
mEB2

m − (EŪmBm)
2
=
(

σ4(r+1)τ2(1− f )
nr(r−1)

)2
·A1,

with A1 defined in (25),

EŪmEB2
m −EBmEŪmBm = 2σ6τ4(1− f )2(r+1)

nr2(r−1) ·A2,

with A2 defined in (26),

EŪ2
mEBm −EŪmEŪmBm = 2σ6τ2(1− f )(r+1)

n2(n−1)2r(r−1) ·A3,
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with A3 defined in (27),

Note that (14) can be rewritten as

MSE(X̄MImp) =
σ2

r ·A4,

with A4 defined in (28),

Therefore, plugging the above identities into (54), (55) we obtain the formulas for the

optimal α and β as given in (24).

To obtain optimal MSE as given in (29) we compute T (α∗,β∗). Due to (52) and (53) we

get

T (α∗,β∗) = MSE X̄MImp(MSE X̄MImp −α∗EŪm −β ∗
EBm)

which, after referring to formulas for MSE X̄MImp, EŪm and EBm gives the final result.

7. PROOF OF THEOREM 10

Proof. Note that

lim
κ→∞

⎡⎢⎢⎢⎣
a

b

c

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
1+ 2n(1− f )

(n−1)2m
(1− f )2

f 2
m+1
m−1

(1− f )
f

(
1+ 2

m(n−1)

)
⎤⎥⎥⎥⎦ .

Moreover

lim
κ→∞

⎡⎢⎢⎢⎢⎢⎢⎣
A1

A2

A3

A4

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣

(
1+ 2n(1− f )

(n−1)2m

)
m+1
m−1 −

(
1+ 2

m(n−1)

)2

1
m−1 − 1

m(n−1)

− r−1
m

1+ 1− f
m

⎤⎥⎥⎥⎥⎥⎥⎦ .

Plugging the above values in the formulas (24) gives α∗,∞ = limκ→∞ α∗ and

β∗,∞ = limκ→∞ β∗ as in (30) .

The MSE follows from taking the limit as κ → ∞ in (29), which is the same as inserting

in this formula the limiting values of a,b,c and A1,A2,A3,A4 as obtained above. Thus the

result follows.
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8. PROOF OF THEOREM 12

Proof. The standard Lagrange approach to the minimization problem for Var ν2(α,β ) under

the unbiasedness condition αEŪm +β EBm = MSE X̄MImp leads to the solution

α∗,u =
J(α)MSE X̄MImp

J(α)EŪm+J(β )EBm
and β∗,u =

J(β )MSE X̄MImp
J(α)EŪm+J(β )EBm

,

where

J(α) = EŪmVar Bm −EBmCov(Ūm,Bm) and J(β ) = VarŪmEBm −EŪmCov(Ūm,Bm).

We note that for τ2 = 1 (i.e. when κ → ∞)

J(α) = 2σ6(1− f )2(r+1)
nr2(r−1)

(
1

m−1 − 1
m(n−1)

)
, J(β ) = −2σ6(1− f )(r+1)

n2(n−1)2rm

and

MSE X̄MImp =
σ2

r

(
1+ 1− f

m

)
.

Hence we obtain α∗,u and β∗,u as given in (34) and (35).

9. PROOF OF PROPOSITION 14

Proof. Note that

Var ν2
Rub = VarŪm +(1+ 1

m)
2
Var Bm +2(1+ 1

m)Cov(Ūm, Bm)

where VarŪm, Var Bm and Cov(Ūm, Bm) are given in (20), (21) and (22), respectively. Plug-

ging τ2 = 1 in these formulas, after calculations we get (36).

10. PROOF OF THEOREM 15

Proof. Note that (36) implies

lim
m→∞

Var ν2
Rub =

2σ4

r2(r−1) .
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From (34) and (35) we get

lim
m→∞

α∗,u =
(n−1)(n−2)

f [(n−1)(n−2)−(r−1)] and lim
m→∞

β∗,u = − r−1
(1− f )[(n−1)(n−2)−(r−1)] .

Since limκ→∞ τ2 = 1, from (20), (21) and (22) we get

lim
κ→∞
m→∞

VarŪm = 2σ4

(r−1)n2 , lim
κ→∞
m→∞

Var Bm = 2σ4(1− f )2

r2(r−1) , lim
κ→∞
m→∞

Cov(Ūm, Bm) =
2σ4(1− f )
r(r−1)n .

Thus

lim
m→∞

Var ν2(α∗,u,β∗,u) = 2σ4

r2(r−1) lim
m→∞

( f α∗,u +(1− f )β∗,u)2

and the result follows since limm→∞( f α∗,u +(1− f )β∗,u) = 1.

We note that

lim
m→∞

α∗,∞ = r−1
r+1 lim

m→∞
α∗,u and lim

m→∞
β∗,∞ = r−1

r+1 lim
m→∞

β∗,u.

Therefore

lim
m→∞

Var ν2(α∗,∞,β∗,∞) =
( r−1

r+1

)2
lim

m→∞
Var ν2(α∗,u,β∗,u) =

2σ4(r−1)
r2(r+1)2 .

Similarly,

lim
m→∞

Bν2(α∗,∞,β∗,∞) = lim
m→∞

[ r−1
r+1 (α∗,uEŪm +β∗,uEBm)−MSE X̄MImp

]
.

Since ν2(α∗,u,β∗,u) is ubiased for MSE X̄MImp it follows that

lim
m→∞

Bν2(α∗,∞,β∗,∞) =
( r−1

r+1 −1
)

lim
m→∞

MSE X̄MImp = − 2σ2

r(r+1) .

Finally, we get

lim
m→∞

MSEν2(α∗,∞,β∗,∞) =
2σ4(r−1)
r2(r+1)2 +

(
2σ2

r(r+1)

)2
= 2σ4

r2(r+1) .
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[26] WESOŁOWSKI, J., TARCZYŃSKI, J. Mathematical basics of imputation techniques. Wiad. Statyst. 9(664)

(2016), 7-54. (in Polish)

39





Bartłomiej Bosek1, Sebastian Czerwiński2, Michał Dębski3,
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Abstract: In this article we present a collection of problems and results concerning a special type of
hypergraphs which emerged recently in discrete geometry, in a context of multiple coverings. These are
uniform hypergraphs on the set of positive integers whose edges can be linearly ordered by a relation
inherited from the natural order of the integers. We call them chain hypergraphs. One transparent example
is based on the family of homogeneous arithmetic progressions of fixed length k, which are sets of the form
{a,2a, . . . ,ka}, with a ∈ N. Is there a k-coloring of N such that every member of this family is rainbow?
This innocently looking question has some unexpected connections to deep number-theoretic problems.
Another challenge concerns the weak version of a hypergraph coloring, in which it is sufficient that no edge
of a hypergraph is monochromatic. It is conjectured that every chain hypergraph (with sufficiently large
edges) is weakly 2-colorable. We discuss possible ways of attacking these and other related problems. We
also pose some new questions involving other kinds of coloring for chain hypergraphs.
Keywords: hypergraph coloring, chain hypergraph, shift hypergraph, arithmetic progression
Mathematics Subject Classification (2020): 05C65 (primary), 05C15, 11B25

1. INTRODUCTION

A hypergraph is a pair H = (V,E), where V is a set whose elements are called the vertices
of H and E is any collection of non-empty subsets of V , called the edges of H. A hypergraph
is k-uniform if each edge is of cardinality k. A coloring of a hypergraph is any mapping
from its vertex set V to a certain set of colors. We will discuss several coloring problems for
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a special family of hypergraphs that emerged recently in discrete geometry (see Pálvölgyi
[18] and Pach and Pálvölgyi [17]). It is defined as follows.

Let V = {1,2, . . . ,n}. Let A = {a1, . . . ,ak} and B = {b1, . . . ,bk} be two k-element subsets
of V , numbered increasingly, that is, ai < a j and bi < b j for every pair of indices 1� i< j � k.
We write A � B if ai � bi for all i ∈ {1,2, . . . ,k}.

A k-uniform hypergraph H on the vertex set V is called a chain hypergraph, or shortly
a chain, if for every pair of edges A,B of H we have either A � B or B � A. Equivalently, that
the whole collection of edges of H can be put into a linear order accordingly to this relation.

A coloring of a hypergraph H is proper if in this coloring no edge of H is monochromatic.
The chromatic number χ(H) of a hypergraph H is the least number of colors in a proper
coloring of H. The following intriguing problem concerning the chromatic number of chain
hypergraphs was posed in [18].

Conjecture 1 (Pálvölgyi [18]). Every k-uniform chain hypergraph H satisfies χ(H) = 2, for
a sufficiently large k.

It is easy to see that 2-uniform hypergraphs (which are simple graphs) can demand more
than two colors for a proper coloring. In [18] it was demonstrated that also 3-uniform chain
hypergraphs may have the chromatic number greater than 2. However, no example of a 4-
uniform chain with the chromatic number greater than 2 is known. On the other hand, one
can easily prove that every chain hypergraph H satisfies χ(H)� 3 (see Theorem 3).

It is perhaps worth noticing that to prove Conjecture 1 it is sufficient to confirm it for just
one specific value of k. Indeed, for every m � k, any m-uniform chain H can be restricted to
a k-uniform chain H ′ by taking the first k elements of every edge. So, every proper coloring
of H ′ is a proper coloring of H and therefore we have χ(H)� χ(H ′).

We will also consider other types of colorings for chain hypergraphs. For instance, in
a rainbow coloring no edge may contain two vertices with the same color. Let us denote by
χr(H) the rainbow chromatic number of a hypergraph H, that is, the least number of colors
in a rainbow coloring of H. Clearly, for every k-uniform hypergraph we have χr(H)� k.

Our favorite rainbow coloring problem for chains concerns a special sub-family of hy-
pergraphs, whose edges are homogeneous arithmetic progressions, that is, sets of the form
{a,2a, . . . ,ka} for any a ∈ N. We call them homogeneous arithmetic chains. The following
conjecture was posed independently by Bosek (see [6]) and Pach and Pálvölgyi (see [17]).

Conjecture 2. Every k-uniform homogeneous arithmetic chain H satisfies

χr(H) = k.

One may easily prove that the conjecture is true for k = p − 1, where p is any prime
number (Proposition 23). However, in general the conjecture might be hard to prove. Indeed,
it is stronger than the statement of the famous Graham’s gcd-problem, which was eventually
proved by deep methods of analytic number theory (see [3]).

We will further discuss the above problems in subsequent sections including some results
here and there.
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2. SKELETONS OF CHAIN HYPERGRAPHS

We start with proving an upper bound for the chromatic number of general chain hyper-
graphs. The proof shows that every 2-uniform chain is 3-colorable, which is actually a known
fact. Indeed, 2-uniform chain hypergraphs are the same as well-known and intensively stud-
ied 1-queue graphs, which are known to be 3-colorable (see [11]). We decided to include our
algorithmic proof, which is slightly different from the one presented in [11].

Theorem 3. Every chain hypergraph H satisfies χ(H)� 3.

Proof. As mentioned above, it suffices to prove the assertion of the theorem for graphs
(2-uniform chains). Let G = (V,E) be a chain graph. Consider the following algorithm:

Algorithm 1: Lazy-Greedy Coloring
Output: proper coloring f of G

1 c ← 1
2 for each v ∈ V (in increasing order) do
3 if v has a neighbor u such that f (u) = c then
4 c ← minimum color not appearing in { f (u) : u ∈ N(v) and u < v}
5 set f (v) = c

If a vertex v has a predecessor which is its neighbor, then we call it important. Let wv be the
leftmost neighbor of an important vertex v. For two vertices x< y, let [x,y) = {u : x� u< y}.

We claim that the Algorithm 1 colors any chain graph using at most 3 colors. To prove
that we shall show that the following invariant holds:

Invariant: Before an iteration of the algorithm, for an important vertex v, the vertices of
[wv,v) are colored with at most 2 colors such that for some vertex x ∈ [wv,v), the vertices of
[wv,x) are colored with one color and the vertices of [x,v) are colored with the other color.

Clearly, the invariant is true before the pass of the for loop for the leftmost (the first)
important vertex.

Now suppose the invariant holds for all important vertices preceding a vertex v. Let u be
the most right important predecessor of v and let x be a vertex such that the vertices of [wu,x)
are colored with blue and the vertices of [x,u) are colored with red. If u has a neighbor y in
[x,u), then u is colored with a color, say c, different from red. All vertices of [u,v)\{u} are
colored with c too because they are not important. Moreover, x � wv because G is a chain
(consider the edges uy and vwv). One can easily observe that the invariant holds for v.

Thus, assume that u does not have a neighbor in [x,u). Then, we are done again because
all vertices of [u,v) are colored with red and wu � wv (since G is a chain).
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From the invariant it is easy to observe that the algorithm uses at most 3 colors. Indeed,
since all colored neighbors of v received one of the two colors, we can always use the third
color to color v.

To obtain a general upper bound for the rainbow chromatic number of chain hypergraphs
we need to consider an auxiliary structure – the skeleton graph of a hypergraph. Let H
be a hypergraph on the set of vertices V . The skeleton graph G(H) of a hypergraph H is
a graph with the same vertex set V and the edges joining all pairs of vertices which appear
in a common edge of H. It is obvious that any rainbow coloring of H is at the same time
a proper coloring of G(H), and vice versa. So, for every hypergraph H we have

χr(H) = χ(G(H)). (1)

Recall that the clique number of a graph G, denoted by ω(G), is the largest integer t such
that G contains the complete graph Kt as a subgraph. It is clear that every graph G satisfies
ω(G)� χ(G). Hence, every hypergraph H satisfies

ω(G(H))� χr(H). (2)

If H is k-uniform, then ω(G(H))� k.

The following simple proposition will be used in bounding the rainbow chromatic number
and the clique number of skeletons of chain hypergraphs:

Proposition 4. Let H be a k-uniform chain hypergraph H on the vertex set V and let v ∈ V .
There exists a k-uniform chain hypergraph H ′ such that G(H)− v ⊆ G(H ′).

Proof. Let H be a fixed k-uniform chain. To simplify the notation we denote by G(H) the
skeleton of G by G′ the graph G− v.

Let H ′′ be the subhypergraph of H induced by V \ {v}, that is, we remove from H the
vertex v and all edges containing v (note that some vertices may become isolated). Let G′′

denote G(H ′′). Clearly V (G′′) =V (G′) and E(G′′) ⊆ E(G′).

We shall construct H ′ iteratively. If E(G′′) = E(G′), then we are done. Suppose then that
there are two vertices u,w such that uw ∈ E(G′) and uw /∈ E(G′′). Then there is an edge
B = {b1,b2, . . . ,bk} in H, such that u,w ∈ B (clearly B is not an edge in H ′′). Moreover,
v ∈ B.

Consider the following two cases:

Case 1. There exists an edge in H ′′, which precedes B in the order � defining chain hyper-
graphs. Let A = {a1,a2, . . . ,ak} be the edge of H ′′ directly preceding B in this order. Define
A′ = {a′

1,a
′
2, . . . ,a

′
k} as follows:

a′
i =

{
ai if bi = u,w
bi if bi = u,w.

Let H ′ be the hypergraph H ′′ with an additional edge A′. Since A � A′ � B, H ′ is a k-uniform
chain hypergraph. Moreover, since u,w ∈ A′, uw is an edge in G(H ′).
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Case 2. There is no edge in H ′′ preceding B in the order �. Let C = {c1,c2, . . . ,ck} be the
first edge in H ′′. Define C′ = {c′

1,c
′
2, . . . ,c

′
k} as follows:

c′
i =

{
ci if bi = u,w
bi if bi = u,w.

Let H ′ be the hypergraph H ′′ with an additional edge C′. Since B � C′ � C, H ′ is a k-
uniform chain hypergraph. Moreover, since u,w ∈ C′, uw is an edge in G(H ′).

The statement of the proposition follows from repeated application of the above proce-
dure.

By applying Proposition 4 a number of times, we obtain the following result:

Corollary 5. For every k-uniform chain hypergraph H and every induced subgraph G′ of
G(H) there exists a k-uniform chain hypergraph H ′ such that G′ is a spanning subgraph of
G(H ′).

A k-uniform chain hypergraph H is maximal if for every two of consecutive edges A � B,
|A∩B| = k − 1. Observe that every chain hypergraph is a subhypergraph of some maximal
chain hypergraph on the same vertex set. The following proposition gives an upper bound
on the number of edges in a k-uniform chain on n vertices:

Proposition 6 (Pálvölgyi [18]). A k-uniform chain hypergraph H on n vertices has at most
k(n− k)+1 edges.

Clearly the chain hypergraph with the maximum number of edges is maximal.

Corollary 7. A skeleton graph of a k-uniform chain hypergraph on n vertices has at most

(k(n− k)+1)
(

k
2

)
<

k2(k−1)
2

n (3)

edges.

By this corollary we immediately get the aforementioned general bound on χr(H) for
chain hypergraphs.

Theorem 8. Every k-uniform chain hypergraph H satisfies

χr(H)� k2(k−1). (4)

Proof. Let H be a k-uniform chain hypergraph with n vertices. We will demonstrate that
χ(G(H)) satisfies the asserted inequality.

If n � k then the theorem is obviously true. Suppose the claim holds for all chain hyper-
graphs with less than n vertices. By Corollary 7, G(H) has a vertex v with degree smaller
than k2(k−1).
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Consider the graph G′ = G(H)−v. By Corollary 5, there is a k-uniform chain hypergraph
H ′, such that G′ is the spanning subgraph of G(H ′). By the induction hypothesis, G(H ′) (and
thus G′) can be colored with c = k2(k − 1) colors. Since the degree of v is strictly smaller
than k2(k−1), we can always extend this coloring to the coloring of G(H) without using any
additional colors.

We are able to get much better upper bound than (4) for the cardinality of the largest
clique in the skeleton graph of a chain hypergraph.

Let H be a k-uniform chain hypergraph and let C be a clique in G(H); suppose it has m ver-
tices. By Corollary 5, there exists a k-uniform hypergraph H ′ such that C is a spanning sub-
graph of G(H ′). Since C is a clique, C = G(H ′). Let H ′′ denote a maximal k-uniform chain
hypergraph on vertex set V (C) with the largest number of edges, such that H ′ is a subhyper-
graph of H ′′. Clearly G(H ′′) =C. Let V (H ′′) = {1,2, . . . ,m} and E(H ′′) = {A1,A2, . . . ,As}
(both sets are ordered).

On one hand, there are
(m

2

)
edges in C and each of them is covered by at least one edge of

H ′′. The first edge of H ′′ covers
(k

2

)
edges of C. Since H ′′ is maximal, there are k −1 edges

covered by Ai, which were not covered by Ai−1. Thus, we obtain the following inequality:(
m
2

)
�
(

k
2

)
+ k(m− k)(k−1). (5)

From this it follows that m � 2k2 −3k+1, so we have proved the following statement.

Theorem 9. Every k-uniform chain hypergraph H satisfies

ω(G(H))� 2k2 −3k+1.

It would be nice to know how large the dissonance between χr(H) and ω(G(H)) may be
for chain hypergraphs. Currently, we do not know of any example where these two numbers
differ. Hence, we dare to state the most provocative conjecture.

Conjecture 10. Every chain hypergraph H satisfies χr(H) = ω(G(H)).

In the next section we present a class of chain hypergraphs supporting this conjecture.

3. SPECIAL CHAIN HYPERGRAPHS

A chain hypergraph H is called special if for every pair of edges A,B such that A � B the
last element in A\B is smaller than the first element in B\A. This type of chain hypergraphs
was introduced in [17] in connection to the decomposable coverings problem.
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Recall that a graph G is perfect if every induced subgraph F of G satisfies χ(F) = ω(F).
We will prove that skeletons of special chain hypergraphs are perfect.

Let H be a k-uniform special chain hypergraph on the vertex set V = {1,2, . . . ,n}, with
no isolated vertices. Define a relation ≺ on the set V in the following way:

a ≺ b ⇐⇒ a < b and no edge in H contains both vertices a and b.

Observe that ≺ is a strict partial order. Irreflexivity and asymmetry are obvious. For the
transitivity, consider a,b,c ∈ V such that a ≺ b and b ≺ c. It is clear that a < c. Suppose
there is an edge A in H, such that a,c ∈ A. Since a ≺ b, we know that b /∈ A. Let B be an
edge containing b. Clearly it does not contain a nor c. Assume that A � B (the other case is
symmetric). Thus, we obtain that:

max(A\B)� c > b � min(B\A)

which contradicts the speciality of H.

By � we denote the union of the relations ≺ and =. Recall that the incomparability graph
of a partially ordered set P is a graph on P in which every pair of incomparable elements is
joined by an edge (and no other edges are present). It is not hard to verify the following
proposition:

Proposition 11. For every special chain hypergraph H on the vertex set V , the skeleton
graph G(H) is the incomparability graph of the partially ordered set (V,�).

It is well-known that incomparability graphs are perfect (see [10] or [4]). Hence, we get
the aforementioned statement.

Corollary 12. The skeleton graph of every special chain hypergraph is perfect. In particular,
every special chain hypergraph H satisfies χr(H) = ω(G(H)).

We now give an upper bound on the rainbow chromatic number of special chain hyper-
graphs.

Theorem 13. Every k-uniform special chain hypergraph H satisfies

χr(H)� 2k−1.

Moreover, this bound is in general best possible.

Proof. For a hypergraph H with the vertex set V and V ′ ⊆ V , by H[V ′] we denote the hyper-
graph with vertex set V ′ and edge set {A∩V ′ : A ∈ E(H)}. Clearly ω(G(H ′)) � ω(G(H))
for any H and H ′ = H[V ′].

We will prove by induction that the maximum clique in a skeleton of special chain hyper-
graph whose edges have at most k elements has at most 2k−1 vertices.

For k = 1 the claim is trivial. Now assume k > 1 and the claim holds for all hypergraphs
with edges of cardinality smaller than k. Let H be a k-uniform special chain hypergraph with
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ω(G(H)) of the largest possible value, say ω(G(H)) = t, and let V ′ be the vertex set of the
maximum clique in G(H). By H ′ we denote H[V ′]. Let x and y denote the the first and the
last vertex in V ′, respectively.

Since H ′ is special, every edge of H ′ should contain x or y (this follows from properties
of special chain hypergraphs). Let V ′′ =V ′ \ {x,y} and H ′′ = H ′[V ′′]. Every edge in H ′′ has
at most k −1 elements, so by inductive hypothesis we know that ω(G(H ′′))� 2(k −1)−1.
Thus t = ω(G(H ′))� 2(k−1)−1+2 = 2k−1.

For the lower bound, consider the following hypergraph H. The vertex set of H is V =
{v1,v2, . . . ,v2k−1}. The edge set is:

2k−1⋃
i=k

{{v1,v2, . . . ,vk−1,vi}}∪{{vk−1,vk, . . . ,v2k−1}}.

It is not hard to verify that it is special and its skeleton is a clique.

Concerning the weak chromatic number of special chain hypergraphs, it is known that
they satisfy Conjecture 1.

Theorem 14 (Pach and Pálvölgyi [17]). Every special chain hypergraph H, with edges of
size at least 3, satisfies χ(H) = 2.

This result has been generalized in [16] as follows:

Theorem 15 (Keszegh and Pálvölgyi [16]). Every (2t−1)-uniform special chain hypergraph
is t-colorable so that every edge contains at least one point of each color.

This result is related to the classic theorem of Erdős and Lovász that will be discussed in
the next section.

4. SHIFT HYPERGRAPHS

Another type of chain hypergraphs was introduced in a seminal paper by Erdős and
Lovász [13], where the famous local lemma was invented. A hypergraph H is called a shift
hypergraph if every edge is a translated copy of a fixed finite subset A of the integers. More
formally, H is a shift hypergraph if there exists a set of integers A = {a1,a2, . . . ,ak} such that
all edges od H are of the form t +A, where

t +A = {t +a1, t +a2, . . . , t +ak}.

We will prove that there exist k-uniform shift hypergraphs whose rainbow chromatic num-
ber is of order at least Ω(k2). Recall that a set C of vertices in a k-uniform hypergraph H
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is a weak clique if for each two vertices in C there is an edge in H containing both of these
vertices. Clearly, the set C is a clique in the skeleton graph G(H).

A t-complete sparse ruler R(m,k, t) of length m with k marks is a sequence of integers
a1,a2, ...,ak called marks, where 0 = a1 < a2 < ... < ak = m, such that for every �, 0 � �� t,
there are marks ai and a j such that a j − ai = �. If t = m, then a t-complete sparse ruler is
called complete sparse ruler R(m,k).

There is a close relationship between weak cliques in shift hypergraphs and complete
sparse rulers that is captured by the following statement:

Proposition 16. There exists a k-uniform shift hypergraph with a (t+1)-element weak clique
whose vertices are consecutive integers if and only if there exists a t-complete sparse ruler
R(m,k, t) for some m.

Proof. (⇐) Let A be the ruler R(m,k, t) and let H be the k-uniform shift chain {s+A : s =
0,1, . . . ,m + t}. We claim that the set C = {m,m + 1, . . . ,m + t} is a weak clique in H.
Consider a,b ∈ C, a < b, and let d = b−a. As d � t, there are two elements ai,a j in A such
that a j −ai = d. Clearly, the set (a−ai)+A contains both a and b.

(⇒) Let H = {s+A : s = 0,1, . . . ,r} be a k-uniform shift chain with a (t + 1)-element
weak clique C whose vertices are consecutive integers. We claim that A is a t-complete
sparse ruler R(m,k, t), where m is the largest element in A. Let 0 � � � t. There are two
elements a,b in C such that b−a = �. As some edge s+A contains both a and b, there are
ai,a j ∈ A such that a j −ai = �.

By this proposition we get the aforementioned lower bound for the rainbow chromatic
number of shift hypergraphs.

Theorem 17. For every k there is a k-uniform shift hypergraph H satisfying

χr(H)� k2

3
−2k+4.

Proof. Wichmann [20] constructed for every m a complete sparse ruler R(m,k) with
k � �

√
3m�+3. Thus, Proposition 16 implies the existence of k-uniform shifts hypergraphs

with weak cliques of cardinality at least k2

3 −2k+4 for every k.

The first coloring problem stated for shift hypergraphs was the following, innocently look-
ing question asked by Strauss (see [13]): For a given t, does there exist a finite k such that for
any set S of k integers, there is a t-coloring of the integers such that every integer translate of
S (i.e. every set of the form �+S, where � is an integer) meets every color class?

Let f (t) denote the least such k. In [13] it was proved that f (t) is actually finite. It was
the first use of the celebrated local lemma. More specifically, it was shown there that

f (t)� (3+o(1))t ln t.
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Then in [1] the following lower bound was derived:

f (t)� (1−o(1))t ln t.

Currently best upper bound obtained in [15] meets asymptotically this lower bound:

f (t)� (1+o(1))t ln t.

A similarly defined function may be studied for more general chain hypergraphs. For
instance, Theorem 15 asserts that f (t)� 2t −1 in the case of the special chain hypergraphs.
It would be nice to know what happens in the general case.

5. ARITHMETIC CHAIN HYPERGRAPHS

A chain hypergraph H is arithmetic if each edge of H is an arithmetic progression. A spe-
cial case is obtained by allowing only homogeneous arithmetic progressions, that is, sets of
the form {a,2a, . . . ,ka} with a ∈ N. We will call them homogeneous arithmetic chains.

The following innocently looking question was asked by Graham [14]: Is it true that
among any n distinct positive integers a1,a2, . . . ,an there is always a pair ai,a j satisfying

ai

gcd(ai,a j)
� n?

The question was answered in the affirmative for sufficiently large n by Szegedy [19] and in-
dependently by Zaharescu [21]. Then Balasubramanian and Soundararajan [3] gave a com-
plete solution by using deep methods of analytic number theory.

It is not hard to see that Graham’s question is equivalent to the following: Is it true that
the clique number of the skeleton of any k-uniform homogeneous arithmetic chain is equal
to k? The result of [3] gives a positive answer to this question.

Theorem 18 (Balasubramanian and Soundararajan [3]). Every k-uniform homogeneous arith-
metic chain H satisfies ω(G(H)) = k.

Additionally, it was proved in [3] that the maximum biclique in the skeleton graph G(H)
is the complete bipartite graph Kk,k. Perhaps to solve Conjecture 2 one will need to recognize
the structure of skeletons G(H) more deeply. Unfortunately, for k = 3 these graphs are not
perfect. A number of results in that direction was proved in [6]. For instance, the following
result showing that Conjecture 2 is asymptotically true:

Theorem 19. Every k-uniform homogeneous arithmetic chain H satisfies

χr(H) = (1+o(1))k.
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We conclude this section with the following generalization of Conjecture 2:

Conjecture 20. For every t = 2,3, . . . ,k, every k-uniform homogeneous arithmetic chain
hypergraph is t-colorable so that each edge meets every color.

Actually, the statement is equivalent to Conjecture 2, as the case t = k implies all smaller
cases (by any partition of the set of k colors into t non-empty parts). Thus, proving it for
each particular value of t gives a step towards the full conjecture.

It is not hard to prove the conjecture for t = 2. Actually, in this case one may prove
a much stronger statement corresponding to equitable partition of the set of k colors. Let us
call a 2-coloring of a hypergraph H perfectly balanced if every edge has the same number of
vertices in each color (or almost the same when k is odd).

Theorem 21 (Bosek and Grytczuk [7]). Every k-uniform homogeneous arithmetic chain has
a perfectly balanced 2-coloring.

Proof (sketch). A basic idea of the proof is simple. Let k be a fixed positive integer. Let
f be a completely multiplicative function assigning to every positive integer one of the two
values {−1,+1}. This means that f (ab) = f (a) f (b) for any pair a,b ∈ N. Notice that
such a function is completely determined by specifying values f (p) for all prime numbers
p. Notice also that it must be f (1) = +1.

Suppose now, that we have a completely multiplicative function f that satisfies

k

∑
i=1

f (i) ∈ {0,−1,+1}. (6)

Then, for every a ∈ N we have

k

∑
i=1

f (ai) =
k

∑
i=1

f (a) f (i) = f (a)
k

∑
i=1

f (i) ∈ {0,−1,+1}. (7)

This means that the coloring f is perfectly balanced on every edge {a,2a, . . . ,ka}. Hence,
to prove the assertion of the theorem it suffices to construct, for every k, a completely multi-
plicative function f satisfying condition (6). This can be done as follows:

We start with a completely multiplicative function g specified by taking g(p) = ±1 in
accordance to whether a prime p is congruent to +1 or −1 modulo 3, with g(3) = +1. It
can be proved that ∑k

i=1 g(i) is exactly equal to the number of 1’s in the ternary expansion of
k (see [5]). In particular, this sum is never negative and bounded from above by log3 k+ 1.
So, to get a function f with a desired property it suffices to change the sign +1 into −1
of at most log3 k+ 1 primes of the form 3t + 1 lying in the interval [k/2,k]. This operation
will not affect multiplicativity of g. The fact that there exists a sufficient number of primes
of that form in this interval follows from the celebrated Dirichlet’s Theorem on primes in
arithmetic progressions (see [2]). This gives the result for a sufficiently large k. Complete
proof demands more delicate tricks together with some computational experiments (see [7]).
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A perfectly balanced coloring may be defined for more than two colors in the same way.
In view of the above result, we state the following strengthening of the last conjecture (still
equivalent to Conjecture 2):

Conjecture 22. For every t = 2,3, . . . ,k, every k-uniform homogeneous arithmetic chain has
a perfectly balanced t-coloring.

It is not hard to prove the statement for k = p − 1, where p is a prime number (see [6],
[9]).

Proposition 23. Let p be a prime number. Then every (p−1)-uniform homogeneous arith-
metic chain has a perfectly balanced t-coloring, for every t ∈ {2,3, . . . , p−1}.

Proof. As noticed above, it is enough to prove the statement for t = p−1. Let H be a fixed
chain hypergraph whose edges are homogeneous arithmetic progressions of length p−1.

We define a desired coloring of H as follows: write a natural number n as n = psm, where
m is not divisible by p. Let r(m) be the residue of m modulo p. We assign r(m) as a color of
the number n. Since residue zero is excluded, there are p−1 different colors.

It is not hard to see that no two elements of the same edge in H may have the same color.
Indeed, let an and bn be any two distinct elements of the progression {n,2n, . . . ,(p− 1)n}.
Since a and b are not divisible by p, we have an = psma and bn = psmb. Consequently, the
color of an is r(ma) and the color of bn is r(mb). If these two colors are equal, then, by
multiplication properties of residues modulo p, also r(a) = r(b), which means that a = b.
Hence, an = bn and the proof is complete.

6. THE LAST CHALLENGE

We conclude the paper with a challenging problem inspired by the recent breakthrough
result concerning the queue number of planar graphs.

Let G be a graph whose vertices are linearly ordered. The queue number of G is the least
number of colors needed to color the edges of G so that each color class forms a (2-uniform)
chain hypergraph (with respect to the common linear order of vertices). A long-standing
open question was whether the queue number of planar graphs was finite. It was recently
solved in the affirmative in [12] by proving a deep structural result for more general minor-
closed classes of graphs.

A natural generalization of this statement could be formulated by using chain hypergraphs
and some natural hypergraph extension of planar graphs. Let us call a hypergraph H planar
if there is a realization of H by a pseudo-disk arrangement in the sense that the vertices are
embedded as points and the edges as pseudo-disks such that a point is contained in a pseudo-
disk if and only if the respective vertex is in the respective edge (see [8]).
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A definition of the analogue of the queue number, which could be called the chain number
of a hypergraph, is analogous: it is the least number of colors needed to color the edges of
an ordered k-uniform hypergraph so that each color class forms a chain hypergraph.

Conjecture 24. For every k � 2, the chain number of planar k-uniform hypergraphs is
bounded.
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Abstract: Quasistatic models in the inelastic deformation theory are very often used in the engineering
practice for the numerical analysis of observed real deformation processes. In these models there appear
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1. THEORY OF INELASTIC DEFORMATIONS - SHORT
INTRODUCTION

The theory of inelastic deformations is a part of continuum mechanics. In this theory sys-
tems of equations are considered, which model viscoplastic deformations of solids at small
strains in the quasistatic or in the dynamic setting of the problem. In this article we will study
the quasistatic case only. Such systems consist of linear partial differential equations cou-
pled with nonlinear differential inclusions (or ordinary differential equations) for the vector
of internal variables. The partial differential equations result from general mechanical laws.
The differential inclusions are experimental, and depend on the kind of considered material.
Therefore, in engineering sciences there are many inelastic constitutive equations, always
specially adapted to the material under consideration. The first part of the system in the
quasistatic setting of the problem in all models represents the balance of forces acting on the
material

divx T (x, t) = −F(x, t) (x, t) ∈ Ω× (0,Te). (1)
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Here Te > 0 is a fixed length of a time interval, Ω ⊂ R3 is a bounded domain with a smooth
boundary ∂Ω, u : Ω× (0,Te) → R

3 denotes the displacement field, T : Ω× (0,Te) → S3 =
R

3×3
sym is the Cauchy stress tensor, and F : Ω × (0,Te) → R3 describes the external forces

acting on the body. The other parts of the system consist of constitutive relations

T (x, t) = F0≤s≤t

(
∇u(x,s)

)
, (2)

where the right-hand side denotes a functional depending on the history of the displacement
gradient. The theory, which we are going to present, assumes that the functional F0≤s≤t
consists of the elastic constitutive equation

T (x, t) = D
(

ε(x, t)− ε p(x, t)
)
, (3)

where ε = ε(u) = 1
2(∇u+∇T u) is the symmetrized displacement gradient, ε p : Ω×(0,Te)→

S3 describes the plastic part of the deformation and D : S3 → S3 is the elasticity tensor,
which is assumed to be constant with respect to x ∈ Ω and t ∈ (0,Te), symmetric and posi-
tive definite. This equation is coupled with the inelastic constitutive relation formulated in
general as a differential inclusion

zt(x, t) ∈ f
(

ε(x, t),z(x, t)
)
, (4)

where z : Ω × (0,Te) → R
N is the vector of internal variables. z consists of ε p and other

components z̃ which are introduced to describe the deformation process more appropriately.
f : D( f ) ⊂ S3 ×R

N → P(RN) is the constitutive multifunction and causes the system of
equations (1)+(3)+(4) to become nonlinear. Thermodynamical considerations yield that there
exists a free energy function ψ : D( f ) ⊂ S3 ×RN → R+ such that for all (ε,z) ∈ D( f )

T =
∂ρψ(ε,z)

∂ε
(hyperelasticity) , (5)

∂ρψ(ε,z)
∂ z

·w∗ ≤ 0 for all w∗ ∈ f (ε,z) . (6)

The existence of the free energy function ψ implies that the considered problem with F = 0
and with homogeneous boundary conditions possesses a natural semi-invariant, namely the
total energy does not increase in time

E(u,z)(t) df
=
∫

Ω
ρψ(ε,z)dx ≤ E(u,z)(0). (7)

Using the properties of the elasticity tensor D (5) implies that the free energy function has to
be of the form

ρψ(ε,z) = 1
2D(ε − ε p) · (ε − ε p)+ψ1(z) , (8)

where the function ψ1 depends on the vector z only. There is no precise relationship between
free energy functions and constitutive multifunctions such that the reduced dissipation in-
equality (6) would hold. We restrict our considerations to a subclass of problems, for which
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(6) will be satisfied automatically. We say that the considered problem is of pre-monotone
type if the constitutive multifunction is of the form

f (ε,z) = g
(
−ρ∇zψ(ε,z)

)
(9)

with a multifunction g : D(g) ⊂ RN → P(RN) satisfying

∀ z ∈ D(g) , ∀ z∗ ∈ g(z) z∗ · z ≥ 0 (10)

and with the free energy function ψ given as a positive semi-definite quadratic form

ρψ(ε,z) = 1
2D(ε −Bz) · (ε −Bz)+ 1

2Lz · z. (11)

Here L ∈ RN×N
sym , L ≥ 0 and Bz = B(ε p, z̃) df

= ε p is the orthogonal projection of the vector z
on the direction ε p. Moreover, we assume that the symmetric operator L+BTDB is posi-
tive definite. This class of models was introduced by H.-D. Alber in [1, Definition 3.1.1].
Assuming that 0 ∈ g(0) we can say that (10) gives the monotonicity of g at the point 0. If
additionally the inelastic constitutive multifunction is monotone then we say that the con-
sidered model is of monotone type. For such flow rules we can find in the literature many
articles, (see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) which prove existence and
uniqueness results in dynamical and quasistatic setting of the problem.
Some special subclass of models is very important in the theory of inelastic deformations. If
the operator L is positive definite then the energy controls the whole vector z and therefore
the strain tensor is also controlled by the energy in this case. Such models are called coercive
in the literature and in this article we are going to work in this subclass of models only.

2. MELAN–PRAGER MODEL AND MAIN THEOREM

In this section we are going to present the Melan–Prager flow rule. The vector z of internal
variables consists of two components from S3. The first one is the inelastic strain tensor ε p

and the second one is the so called backstress b. The flow rule is given by the following
system of a differential inclusion coupled with a differential equation

ε p
t ∈ ∂ IK(T −b) , (12)
bt = αε p

t . (13)

Here, K denotes the set of admissible stresses, which is assumed to be of the following form
K = {T ∈ S3 : |PT | ≤ CK}, where CK is a positive constant depending on the material under
consideration. P : S3 → PS3 is the projector on the deviatoric part of symmetric matrices:
PS = S − 1

3 trS · I. The function IK : S3 → R+ is the indicator function of the set K, which
means that

IK(T ) =
{

0 for T ∈ K ,
∞ for T /∈ K .

(14)
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Moreover, the positive constant α depends on the considered material. This means that in
this flow rule we have two positive material constants CK and α . The first constant describes
how large is the elastic domain of the considered material and the second constant describes
the hardening of the material. If α goes to zero then the considered material becomes pure
elasto-plastic (this result in the dynamical case is proved in [6]).
The free energy associated with the Melan–Prager flow rule has the form

ρψ(ε,ε p,b) = 1
2D(ε − ε p) · (ε − ε p)+ 1

2α |b|2 . (15)

Then it is easy to see that the operator L is given by Lz = L(ε p,b) = (0,α−1b) and is semi-
positive definite. Moreover, the operator (L+BTDB)z = (Dε p,α−1b) and is positive defi-
nite. It is also very easy to verify that the flow rule of Melan–Prager is thermodynamically
admissible (satisfies the dissipation inequality (6)) and is of monotone type.
The whole system of equations describing a quasistatic deformation process with the flow of
Melan–Prager is in the form:

divxT (x, t) = −F(x, t) ,

T (x, t) = D(ε(u(x, t))− ε p(x, t)) ,

ε(u(x, t)) =
1
2
(∇xu(x, t)+∇T

x u(x, t)) , (16)

ε p
t (x, t) ∈ ∂ IK

(
T (x, t)−b(x, t)

)
,

bt(x, t) = αε p
t (x, t) ,

where the displacement vector u, the inelastic strain tensor ε p and the backstress b are the
unknowns. We consider system (16) with boundary conditions of mixed type. The Dirichlet
boundary condition on Γ1 ⊂ ∂Ω

u(x, t) = gD(x, t) for x ∈ Γ1 and t ≥ 0 (17)

and the Neumann boundary condition on Γ2 ⊂ ∂Ω

T (x, t) ·n(x) = gN(x, t) for x ∈ Γ2 and t ≥ 0, (18)

where n(x) is the exterior unit normal vector to the boundary ∂Ω at the point x, Γ1 and Γ2
are open in ∂Ω, disjoint, smooth sets satisfying ∂Ω = Γ1 ∪Γ2 and H2(Γ1) > 0, where H2
denotes the 2-dimensional Hausdorff measure. The functions gD,gN are given and describe
boundary data. Finally, the initial conditions for the inelastic strain tensor and the backstress
are given by

ε p(x,0) = ε p,0(x) , (19)
b(x,0) = b0(x) (20)

with given initial data ε p,0 : Ω → PS3 and b0 : Ω → PS3.

The operator L in the Melan–Prager model does not control all directions of the vector z and
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the considered model is not coercive. However, using the very simple form of the equation
(13) from the flow rule, we can integrate this equation in time and obtain

b(x, t) = αε p(x, t)+b0(x)−αε p,0(x) . (21)

For simplicity we assume that b0 = αε p,0. This assumption is not important and it is easy to
see that all results obtained in this article are also true without this technical simplification.
Inserting (21) into (12) we obtain the following new form of the Melan–Prager flow rule

ε p
t (x, t) ∈ ∂ IK(T (x, t)−αε p(x, t)) . (22)

The free energy function associated with this new flow rule is now in the form

ρψ(ε,ε p) = 1
2D(ε − ε p) · (ε − ε p)+ α

2 |ε p|2 . (23)

We see that the vector of internal variables is now reduced to the inelastic strain tensor only.
The free energy controls the direction ε p. Moreover, the operator L in this new setting
is defined by Lε p = αε p and is positive definite. Consequently, the considered model of
Melan–Prager in this new setting is coercive. Hence, the system of equations, which we are
going to study is in the form

divxT (x, t) = −F(x, t) ,

T (x, t) = D(ε(u(x, t))− ε p(x, t)) , (24)

ε p
t (x, t) ∈ ∂ IK

(
T (x, t)−αε p(x, t)

)
.

This system will be considered with boundary conditions (17,18) and with initial condition
(19) reduced to the inelastic strain only. Let us define the notion of a strong solution to
system (24).

Definition 1. Functions (u,ε p) are called a strong solution to system (24) with boundary
conditions (17,18) and with initial condition (19) if

u ∈ C([0,Te],H
1(Ω;R3)) , ut ∈ L

∞((0,Te),H
1(Ω;R3)) ,

ε p ∈ C([0,Te],L
2(Ω;S3)) , ε p

t ∈ L
∞((0,Te),L

2(Ω;S3)) ,

the system (24) is satisfied pointwise for almost all (x, t) ∈ Ω× [0,T ], boundary conditions
(17,18) are satisfied in the sense of traces and initial condition (19) is satisfied in classical
sense.

The initial function ε p,0 generates initial values for the stress and the displacement. Let
us denote by T 0 and by u0 the unique solution of the linear problem

divxT 0(x) = −F(x,0) ,

T 0(x) = D
(

ε(u0(x))− ε p,0(x))
)
, (25)

u0(x)|Γ1 = gD(x,0) , T 0(x) ·n(x)|Γ2 = gN(x,0) .
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We will say that the initial function ε p,0 is admissible if T 0(x)− αε p,0(x) ∈ K for almost
all x ∈ Ω. This means that the initial value for the argument of the nonlinear operator ∂ IK
belongs to the domain of this operator.

Lemma 2. If the boundary data and the external forces have the following regularity: for
all Te > 0

F ∈ W
2,∞((0,Te);L2(Ω;R3)) ,

gD ∈ W
3,∞((0,Te);H

1
2 (Γ1;R3)) , gN ∈ W

2,∞((0,Te);H− 1
2 (Γ2;R3)) , (26)

and the initial inelastic strain tensor ε p,0 ∈ L2(Ω;PS3) is admissible then system (24) with
boundary conditions (17,18) and with initial condition (19) possesses a global in time,
unique strong solution.

Proof. This lemma follows directly from [2], where a similar result is proved for all coercive
models.

Now we are ready to present the problem, which we are going to study in this article.
In the engineering practice quasistatic models from the theory of inelastic deformations are
used in the numerical analysis of observed real deformation processes. In the Malan–Prager
model two material constants appear, which are determined experimentally only. For this
reason it is important to study continuous dependence of solutions with respect to material
constants. This kind of continuity is called material stability in the literature. Let us assume
that we have two convergent positive sequences α l → α and Cl

K →CK and the limits are also
positive. Let us consider strong solutions (ul,ε p,l) to the system

divxT l(x, t) = −F(x, t) ,

T l(x, t) = D(ε(ul(x, t))− ε p,l(x, t)) , (27)

ε p,l
t (x, t) ∈ ∂ IKl

(
T l(x, t)−α lε p,l(x, t)

)
.

where Kl = {T ∈ S3 : |PT | ≤ Cl
K}. This system is considered with boundary conditions

(17,18) and with initial condition (19). We are going to prove that the sequence of strong
solutions converges to the strong solution of (24).

Theorem 3. Let us assume that the boundary data, the external forces and the initial data
have the regularity from Lemma 2. Moreover, assume that the initial data is admissible for
every l. Then the sequence of strong solutions (ul,ε p,l) to problem (27) with boundary condi-
tions (17,18) and with initial condition (19) converges in the topology C([0,Te];H1(Ω;R3)×
L

2(Ω;S3)) to the strong solution of (24).
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3. UNIFORM ENERGY ESTIMATES

In this section we will prove uniform estimates for the sequence of strong solutions to
(27). We begin with an easy observation that the initial displacement vector and the initial
stress defined by (26) do not depend on l. This follows from the fact that the boundary data,
the initial data and the external forces in initial-boundary problem (27) do not depend on l.

Theorem 4. Let us assume that the boundary data, the external forces and the initial data
satisfy all requirements from Theorem 3. Moreover, assume that (ul,ε p,l) is the strong solu-
tion to problem (27) with boundary conditions (17,18) and with initial condition (19). Then
there exists a positive constant C = C(Te), which does not depend on l such that for all
t ∈ (0,Te) the following inequality holds

E l(ul,ε p,l)(t) df
=

1
2

∫
Ω
D(ε(ul)− ε p,l) · (ε(ul)− ε p,l)dx+

α l

2

∫
Ω
|ε p,l|2 dx ≤ C(Te) . (28)

Proof. This theorem can be concluded from the general energy estimate in [9]. However, this
result is very crucial in the proof of the main theorem and therefore we present the whole
proof in this article. Let us calculate the time derivative of the energy E l(ul,ε p,l)(t).

d
dt

E l(ul,ε p,l)(t) =
∫

Ω
D(ε(ul

t)− ε p,l
t ) · (ε(ul)− ε p,l)dx+α l

∫
Ω

ε p,l
t · ε p,l dx

=
∫

Ω
ε(ul

t) ·T l dx−
∫

Ω
ε p,l

t · (T l −α lε p,l)dx ≤
∫

Ω
∇ul

t ·T l dx (29)

=
∫

Ω
ul

tF dx+
∫

Γ1

gDT lndS+
∫

Γ2

ul
tgN dS .

Integrating inequality (29) on (0, t) we have

E l(ul,ε p,l)(t) ≤ E l(ul,ε p,l)(0)

+
∫ t

0

∫
Ω

ul
tF dxdτ +

∫ t

0

∫
Γ1

gDT lndSdτ +
∫ t

0

∫
Γ2

ul
tgN dSdτ . (30)

Let us denote the three integrals on the right hand side of (30) by Ki for i = 1,2,3. From the
observation that the initial displacement does not depend on l we see that the initial energy
E l(ul,ε p,l)(0) is constant. Next we will estimate the integrals Ki for i = 1,2,3. The energy
function does not depend on the time derivative of the displacement vector. Therefore we
write K1 in another form integrating by parts with respect to t.∫ t

0

∫
Ω

ul
tF dxdτ = −

∫ t

0

∫
Ω

ulFt dxdτ +
∫

Ω
ulF dx−

∫
Ω

u0F(0)dx . (31)

We see that the last integral on the right hand side of (31) is equal to a constant and we have
to estimate the remaining integrals.∣∣∣∣∫ t

0

∫
Ω

ulFt dxdτ
∣∣∣∣+ ∣∣∣∣∫Ω

ulF dx
∣∣∣∣≤ (1+Te) sup

(0,t)
[‖ul‖L2(Ω)(‖Ft‖L2(Ω) +‖F‖L2(Ω))] . (32)
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Using the Poincare inequality we have

‖ul‖L2(Ω) ≤ D(‖ε(ul)‖L2(Ω) +‖gD‖
H1/2(Γ1)

) , (33)

where the constant D depends on the set Ω only. From the elastic constitutive relation we
also have that

‖ε(ul)‖L2(Ω) ≤ ‖D−1T l‖L2(Ω) +‖ε p,l‖L2(Ω) ≤ L
√

E l(ul,ε p,l) , (34)

where the positive constant L does not depend on l. In the last estimation we have used
the fact that the sequence α l is bounded from below and from above by positive constants.
Inserting (34) into (33) and the resulting inequality into (32) we conclude that for η > 0 there
exists C(η ,Te)> 0 such that∣∣∣∣∫ t

0

∫
Ω

ulFt dxdτ
∣∣∣∣≤ ηE l(ul,ε p,l)

+C(η ,Te) sup
(0,t)

(‖Ft‖2
L2(Ω) +‖F‖2

L2(Ω) +‖gD‖2
H1/2(Γ1)

+1) . (35)

Next we are going to will estimate K2.∣∣∣∣∫ t

0

∫
Γ1

gDT lndSdτ
∣∣∣∣≤ sup

(0,t)
‖gD,t‖H1/2(Γ1)

sup
(0,t)

‖T ln‖
H−1/2(Γ1)

. (36)

According to the trace theorem in the space L2(div) (this space contains all vector fields
from L

2(Ω) which weak divergence belongs also to L
2(Ω)) we have

‖T ln‖
H−1/2(Γ1)

≤ ‖T ln‖
H−1/2(∂Ω)

≤ M(‖divT l‖L2(Ω) +‖T l‖L2(Ω)) ≤ M̃(‖F‖L2(Ω) +
√

E l(ul,ε p,l)) , (37)

where the constants M,M̃ do not depend on l. Inserting (37) into (36) we obtain that for
every positive κ there exists a positive constant C(κ,Te) such that∣∣∣∣∫ t

0

∫
Γ1

gDT lndSdτ
∣∣∣∣≤ κaE l(ul,ε p,l)+C(κ,Te) sup

(0,t)
(‖F‖2

L2(Ω) +‖gD,t‖2
H1/2(Γ1)

) . (38)

Finally, we have to estimate integral K3. First we shift the time derivative from the displace-
ment vector onto the data.∫ t

0

∫
Γ2

ul
tgN dSdτ = −

∫ t

0

∫
Γ2

ulgN , t dSdτ +
∫

Γ2

ulgN dS−
∫

Γ2

u0gN(0)dS . (39)

The last integral on the right hand side of (39) is constant and we only need to estimate the
other two.∣∣∣∣∫ t

0

∫
Γ2

ulgN , t dSdτ
∣∣∣∣+∣∣∣∣∫Γ2

ulgN dS
∣∣∣∣≤ Te sup

(0,t)
[‖ul‖

H1/2(∂Ω)(‖gN,t‖H−1/2(Γ2)
+‖gN‖

H−1/2(Γ2)
)] .

(40)
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Using the trace theorem in the space H1(Ω) and the Poincare inequality we get

‖ul‖
H1/2(∂Ω) ≤ E‖ul‖H1(Ω) ≤ Ẽ(‖ε(ul)‖L2(Ω) +‖gD‖

H1/2(Γ1)
) , (41)

where the constants E, Ẽ do not depend on l. Using (34) we can conclude that for positive
constant μ there exists a positive constant C(μ,TE) such that

∣∣∣∣∫ t

0

∫
Γ2

ul
tgN dSdτ

∣∣∣∣≤ μaE l(ul,ε p,l)

+C(μ,Te) sup
(0,t)

(‖gN,t‖2
H−1/2(Γ2)

+‖gN‖2
H−1/2(Γ2)

+‖gD‖
H1/2(Γ1)

+1) .

(42)

Adding estimates (35),(38) and (42) side to side and choosing constants η ,κ,μ so that
η +κ +μ < 1 we end the proof.

4. UNIFORM ENERGY ESTIMATES FOR TIME
DERIVATIVES

In the previous section we proved that the sequence {ul} is bounded in the space
C([0,Te],H

1(Ω;R3)) and the sequence {ε p,l} is bounded in the space C([0,Te],L
2(Ω;S3)).

The next step is to obtain uniform estimates for the time derivatives of the strong solutions
to system (27).

Theorem 5. Let us assume that the boundary data, the external forces and the initial data
satisfy all requirements from Theorem 3. Moreover, assume that (ul,ε p,l) is the strong solu-
tion to problem (27) with boundary conditions (17,18) and with initial condition (19). Then
there exists a positive constant C̃ = C̃(Te) which does not depend on l and such that for all
t ∈ (0,Te) the energy evaluated on the time derivatives can be estimated as follows

E l(ul
t ,ε

p,l
t )(t) df

=
1
2

∫
Ω
D(ε(ul

t)− ε p,l
t ) · (ε(ul

t)− ε p,l
t )dx+

α l

2

∫
Ω
|ε p,l

t |2 dx ≤ C̃(Te) . (43)

Proof. Let us denote by (ε(ul)h,ε
p,l
h ) the shifted functions (ε(ul)(x, t +h),ε p,l(x, t +h)) for

h ∈ (0,Te). Let us define by vl the velocity vector ul
t . For simplicity we will write ε l = ε(ul) .
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Calculating the time derivative of the function E l(ε l
h − ε l,ε p,l

h − ε p,l) we obtain

d
dt

E l(ε l
h − ε l,ε p,l

h − ε p,l) =
∫

Ω
D(ε(vl

h)− ε(vl)− ε p,l
h,t + ε p,l

t ) · (ε l
h − ε l − ε p,l

h + ε p,l)dx

+α l
∫

Ω
(ε p,l

h,t + ε p,l
t ) · (ε p,l

h − ε p,l)dx

=
∫

Ω
(ε(vl

h)− ε(vl)) · (T l
h −T l)dx

−
∫

Ω
(ε p,l

h,t + ε p,l
t ) · (T l

h −α lε p,l
h +T l −α lε p,l)dx (44)

≤
∫

Ω
(∇vl

h −∇vl)(T l
h −T l)dx

=
∫

Ω
(vl

h − vl)(Fh −F)dx+
∫

Γ1

(gt
D,h −gt

D)(T
l

h −T l)ndS

+
∫

Γ2

(vl
h − vl)(gN,h −gN)dS ,

where gt
D denotes the time derivative ∂tgD and Fh ,vh ,gt

D,h ,gN,h denote the shifted functions
F ,vl ,gt

D ,gN respectively. Next we integrate (44) on (0, t), shift all difference operators onto
the given data, divide by h2 and go to the limit as h → 0+. Thus, we obtain the inequality

E l(vl,ε p,l
t )(t) ≤ E l(ul

t ,ε
p,l
t )(0)+

∫ t

0
‖Ftt‖L2(Ω)‖vl‖L2(Ω) dτ

+B(Te)(sup
(0,t)

‖gD,ttt‖H1/2(Γ1)
+ sup

(0,t)
‖gD,tt‖H1/2(Γ1)

+1) sup
(0,t)

‖T ln‖
H−1/2(∂Ω) (45)

+B(Te)(sup
(0,t)

‖gN,tt‖H−1/2(Γ2)
+ sup

(0,t)
‖gN,t‖H−1/2(Γ2)

+1) sup
(0,t)

‖vl‖
H1/2(∂Ω)

+ sup
(0,t)

‖Ft‖L2(Ω)‖vl‖L2(Ω) +B(Te) ,

where the positive constant B(Te) does not depend on l. From the admissibility of the ini-
tial data we conclude that the sequence of norms {‖ε p,l

t (0)‖L2(Ω)} is bounded (the sequence
{‖T )−αε p,0‖L2(Ω)} is bounded and the operator ∂ IK is maximal monotone). Hence, the se-

quence {E l(ul
t ,ε

p,l
t )(0)} is finite and constant. We estimate the boundary norm

‖T ln‖
H−1/2(∂Ω) using (37). From the Poincare inequality and from the coerciveness of the

flow rule we estimate the sequence {vl} in the space L2(Ω) in the way similar to the method
used in (33) and in (34). Finally, we estimate the boundary norm ‖vl‖

H1/2(∂Ω) as in (41).
Hence, inserting all these estimates into (45) and using the method from the proof of Theo-
rem 4 we end the proof.
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5. STRONG CONVERGENCE OF STRESSES AND STRAINS

The boundedness of the sequence of strong solutions to system (27) obtained in Theo-
rem 4 implies the existence of a weakly convergent subsequence. In this section we are
going to prove that the whole sequence converges strongly.

Theorem 6. Assume that the boundary data, the external forces and the initial data satisfy
all requirements from Theorem 3. Moreover, assume that (ul,ε p,l) is the strong solution to
problem (27) with boundary conditions (17,18) and with initial condition (19). Then T l → T ,
and ε p,l → ε p in the space C([0,Te],L

2(Ω;S3)).

Proof. This result is crucial in the proof of the main theorem. Let us calculate the time
derivative of the limit energy function

E∞(u,ε p) =
1
2

∫
Ω
D(ε(u)− ε p) · (ε(u)− ε p)dx+

α
2

∫
Ω
‖ε p‖2 dx

evaluated on the differences (ul −uk,ε p,l − ε p,k).

d
dt

E∞(ul −uk,ε p,l − ε p,k) =
∫

Ω
D(ε l

t − εk
t − ε p,l

t + ε p,k
t ) · (ε l − εk − ε p,l + ε p,k)dx

+α
∫

Ω
(ε p,l

t − ε p,k
t ) · (ε p,l − ε p,k)dx (46)

=
∫

Ω
(ε(ul

t)− ε(uk
t )) · (T l −T k)dx−

∫
Ω
(ε p,l

t − ε p,k
t ) · (T l −T k −αε p,l +αε p,k)dx

=
∫

Ω
(∇ul

t −∇uk
t ) · (T l −T k)dx−

∫
Ω
(ε p,l

t − ε p,k
t ) · (T l −T k −α lε p,l +αkε p,k)dx

+(α −α l)
∫

Ω
(ε p,l

t − ε p,k
t ) · ε p,l dx+(αk −α)

∫
Ω
(ε p,l

t − ε p,k
t ) · ε p,k dx

df
= I1 + I2 + I3 + I4 .

It is easy to see that I1 = 0 because system (27) is considered under the assumption that
boundary data and external forces do not depend on l. Moreover, we also see that

|I3|+ |I4| ≤ |α l −α|( sup
(0,Te)

[(‖ε p,l
t ‖L2(Ω) +‖ε p,k

t ‖L2(Ω))‖ε p,l‖L2(Ω)]

+|αk −α|( sup
(0,Te)

[(‖ε p,l
t ‖L2(Ω) +‖ε p,k

t ‖L2(Ω))‖ε p,k‖L2(Ω)] (47)

≤ (|α l −α|+ |αk −α|)2(C̃(Te)+C(Te)) ,

where the positive constants C(Te) ,C̃(Te) are from Theorem 4 and Theorem 5 respectively.
Let us denote by Πr the orthogonal projector of S3 onto the cylinder Kr = {T ∈ S3 : |PT | ≤
r} . We will use this projector in the estimate of I2. Let us assume that Cl

K > Ck
K .
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Then

−
∫

Ω
(ε p,l

t − ε p,k
t ) · (T l −T k −α lε p,l +αkε p,k)dx

= −
∫

Ω
ε p,l

t · (T l −T k −α lε p,l +αkε p,k)dx

+
∫

Ω
ε p,k

t · (ΠCk
K
(T l −α lε p,l)−T k +αkε p,k)dx (48)

+
∫

Ω
ε p,k

t · (T l +α lε p,l −ΠCk
K
(T l −α lε p,l))dx

≤ |Cl
K −Ck

K|‖ε p,k
t ‖L2(Ω)‖T l −α lε p,l‖L2(Ω) ≤ D|Cl

K −Ck
K|(C̃(Te)+C(Te))

where the positive constant D does not depend on l and k. The case Ck
K > Cl

K can be con-
sidered on the same way and if Cl

K = Ck
K then I2 ≤ 0. Inserting (47) and (48) into (46) and

using the fact that system (27) is considered with initial data independent of l and k we end
the proof.

6. PROOF OF THE MAIN THEOREM

From Theorem 6 we have that ul → u in the space C([0,Te],H
1(Ω;R3)). To end the proof

of Theorem 3 it remains to prove that (u,ε p) is the strong solution to system (24).

Proof. The boundedness of the time derivatives of the sequence (ul,ε p,l) implies that ul
t

∗
⇀ ut

in the space L∞((0,Te),H
1(Ω;R3)) and that ε p,l

t
∗
⇀ ε p

t in the space L∞((0,Te),L
2(Ω;S3)).

Consequently, the functions (u,ε p) have the regularity required by Definition 1. It is easy to
see that the limit stress T satisfies the balance of forces divxT = −F and the linear elastic
constitutive relation is also satisfied by T ,ε(u) and ε p. Moreover, since the boundary data
and the initial data do not depend on l we immediately obtain that the limit functions satisfy
(17,18) and (19). To end the proof we have to show that the limit functions satisfy the Melan–
Prager flow rule. For all l we have that |P(T l −α lε p,l)| ≤ Cl

K . From Theorem 6 sequences
of stresses and inelastic strains converge strongly in the space C([0,Te],L

2(Ω;S3)). Then
possibly switching to a subsequence we have also the pointwise convergence for almost all
(x, t) ∈ Ω× [0,Te]. Hence, we conclude that |P(T −αε p)| ≤ CK . Let us assume that a test
stress S ∈ K. It remains to prove that

ε p
t · (S−T +αε p) ≤ 0

for almost (x, t) ∈ Ω × (0,Te). Let ϕ : Ω × (0,Te) → R be a nonnegative smooth function
with compact support. Since (ul,ε p,l) is the strong solution to system (27) we have that∫ Te

0

∫
Ω

ε p,l
t · (S−T l +α lε p,l)ϕ dxdτ ≤ 0 . (49)

Going to the limit as l → ∞ we obtain (49) for the limit functions and the proof is complete.
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Remark
Using the same methods as presented in this article we can prove that the solution operator
to system (24) is also continuous with respect to the external forces, the boundary data and
the initial data.
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[5] Chełmiński K., On monotone plastic constitutive equations with polynomial growth condition, Math.
Meth. App. Sci. 22, 547–562, 1999.
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[9] Chełmiński K., Gwiazda P. Convergence of coercive approximations for strictly monotone quasistatic
models in inelastic deformation theory Math. Meth. App. Sci., 30 (12), 1357-1374, 2007.
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1. INTRODUCTION

Let M be a smooth 2n-dimensional manifold, endowed with a nondegenerate, closed
2-form ω . The 2-form ω is called symplectic and the pair (M,ω) is a symplectic manifold.
We introduce the canonical symplectic structure ω̇ on T M using the vector bundle morphism
β : T M � u �→ ω(u, ·) ∈ T ∗M, namely the pullback of the Liouville symplectic form dθ de-
fined on the cotangent bundle T ∗M, ω̇ = β ∗dθ . A smooth vector field X : M → T M is said
to be Hamiltonian if the form ω(X , ·) is exact. A function H : M → R is called Hamilto-
nian for X if ω(X , ·) = −dH(·). If X is Hamiltonian, then its image X(M) ⊂ T M is a La-
grangian submanifold of (T M, ω̇) generated by H. In local Darboux coordinates, M ∼= R

2n,
ω =∑n

i=1 dyi∧dxi, and ω̇ = β ∗dθ =∑n
i=1(dẏi∧dxi−dẋi∧dyi), where (q, q̇) = ((x,y),(ẋ, ẏ))

are coordinates on TR2n ≡ R
2n×R

2n.

To generalize this notion, we introduce a concept of a Hamiltonian system as a general
Lagrangian submanifold N of the symplectic tangent bundle (T M, ω̇). If τ |N : N → M is sin-
gular, where τ is tangent bundle projection, we also call N an implicit Hamiltonian system
(cf. [12], [7]). Important property of such systems around singularities is their solvabil-
ity, i.e. existence of smooth local curve γ : (−ε,ε) → M such that its tangent lifting γ̇(t)
belongs to N around each point of N. An immediate necessary condition for solvability
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is tangential solvability condition, which is satisfied if q̇ ∈ d(τ |N)v(TvN) for each point
v = (q, q̇) ∈ N. It is proved (cf. [7]) that, for certain naturally generic implicit Hamilto-
nian systems, they are solvable if they fulfill this tangential solvability condition. Another
generalization following P.A.M. Dirac (cf. [3]) is provided by constrained Lagrangian sub-
manifolds (cf. [11]) as Hamiltonian systems. The generalized Hamiltonian function for such
system is a generating family (Morse family) for the corresponding Lagrangian submanifold
Lh; F(x,y,λ ) = ∑k

i=1 ai(x,y)λi + h(x,y) over the constraint K defined by smooth functions
ai(x,y) = 0. The condition of solvability { ∂F

∂λi
,F}= 0 for (x,y,λ ) ∈ S×R2n defines the sec-

tion of Lh which is tangent to K. The general sections of Lh give the vector fields which are
Hamiltonian on the constrained submanifold.

In this work we concentrate on the vector fields of symplectic space (M,ω), which are
Hamiltonian on a subvariety of M. As we do not exclude singularities, our approach is local
and we consider mainly germs of subvarieties and germs of vector fields. We find the spaces
of vector fields, which are Hamiltonian on symplectic, isotropic and coisotropic submani-
folds of (M,ω) and we provide the classification of Hamiltonian vector fields on singular
varieties: planar curves of type Ak,Dk,E6,E7,E8, regular union of three 1-dimensional sub-
manifolds, regular union of two 2-dimensional isotropic submanifolds, and regular union
of two 2-dimensional symplectic submanifolds. We use the Mathematica package Exterior
Differential Calculus for calculations.

2. HAMILTONIAN SYSTEMS ON SUBMANIFOLDS

Let K be a submanifold of R2n and h : K → R be a smooth function on K. The notion
of generalized Hamiltonian system (generalized Hamiltonian dynamics) was introduced by
P.A.M. Dirac in [3]. A generalized Hamiltonian system is the following sub-bundle Lh of
TR2n over K (cf. [13]):

Lh = {v ∈ TR2n : ω(v,u) = −dh(u) ∀u∈T K}. (1)

It is easy to see that Lh is a Lagrangian submanifold of (TR2n, ω̇).

In local coordinates, the generalized Hamiltonian system (1) can be written, using gener-
ating family F : R2n ×Rk → R, in the following way:

F(x,y,λ ) =
k

∑
�=1

a�(x,y)λ�+H(x,y), (2)

where K is defined as a zero-level set of the mapping a : (x,y) �→ (a1(x,y), . . . ,ak(x,y)),
H(x,y) is an arbitrary smooth extension of the function h : K → R and a is a maximal rank
map-germ.
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The generalized Hamiltonian system L is given by an immersion φ : CF → L ⊂ (TR2n, ω̇)
defined by

φ(x,y,λ ) = (x,y,
∂F
∂y

(x,y,λ ),−∂F
∂x

(x,y,λ )), (x,y,λ ) ∈ CF .

Since ∂F
∂λ�

(x,y,λ ) = a�(x,y), we have CF = K ×Rk. Then L can be described as

L = φ(CF) = {(x,y, ∂F
∂y

(x,y,λ ),−∂F
∂x

(x,y,λ )) ∈ TR2n : (x,y,λ ) ∈ K ×R
k}.

L is a skew-conormal bundle to K and its smooth sections are called Hamiltonian sys-
tems on K with Hamiltonian H. This may be extended to Hamiltonian system on M taking
Hamiltonian function

F(x,y) =
k

∑
l=1

λl(x,y)al(x,y)+H(x,y)

for some smooth functions λl(x,y).

Vector fields, which are Hamiltonian on K are given in the form:

n

∑
i=1

k

∑
j=1

λ j(x,y)(
∂a j

∂yi
(x,y)

∂
∂xi

− ∂a j

∂xi
(x,y)

∂
∂yi

)+
n

∑
i=1

(
∂H
∂yi

(x,y)
∂

∂xi
− ∂H

∂xi
(x,y)

∂
∂yi

). (3)

If we consider the functions λ j(x,y) which are smooth solutions of the system of linear
equations (cf. [8]),

k

∑
j=1

{ai,a j}(x,y)λ j = {H,ai}(x,y), i = 1, . . . ,k, (4)

then the vector fields (3) are the logarithmic Hamiltonian vector fields over K.

3. HAMILTONIAN VECTOR FIELDS ON SINGULAR
VARIETIES

Let (M,ω) be a symplectic manifold. Let N be a subset of M.

Definition 1. A smooth vector field X on M is called Hamiltonian on N if there exists
a smooth function H on M such that

(X�ω)|x = −dH|x, for every x ∈ N. (5)
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Example 2. Let (R2n,ω0) be the standard symplectic space. Let N ⊂ (R2n,ω0) be the germ
of a hypersurface with isolated singularity at 0. Assume that the ideal of smooth function-
germs vanishing on N is generated by a smooth function-germ g on R

2n. Let H be a smooth
function-germ on R2n and let XH be a Hamiltonian vector field-germ on (R2n,ω0) with
a Hamiltonian H i.e. XH�ω = −dH. Let Y be a smooth vector field-germ on R2n. Then
the vector field-germ gY +XH is Hamiltonian on N.

A smooth k-form β on M vanishes on N if β |x = 0 for every x ∈ N.

Definition 3. A smooth k-form α on M has zero algebraic restriction to N if there exist
a smooth k-form β on M vanishing on N and a smooth (k−1)-form γ on M vanishing on N
such that

α = β +dγ. (6)

Let Ak
0(N,M) denote the space of smooth k-forms with zero algebraic restriction to N.

Since d(Ak
0(N,M)) ⊂ Ak+1

0 (N,M), the complex (A∗
0(N,M),d) is a subcomplex of the de

Rham complex on M. We denote by H∗(N,M) the cohomology groups of the complex
(A∗

0(N,M),d).

Proposition 4. A smooth vector field X on M is Hamiltonian on N if and only if there exists
a smooth function H on M such that X�ω +dH has zero algebraic restriction to N.

Proof. Definition 1 is equivalent to the following condition:

X�ω +dH =
k

∑
i=1

fiαi, (7)

where α1, · · · ,αk are smooth 1-forms on M, H, f1, · · · , fk are smooth functions on M such
that f1|N = · · · = fk|N = 0. But this implies that X�ω +dH has zero algebraic restriction to
N.

On the other hand, if there exists a smooth function H on M such that X�ω +dH has zero
algebraic restriction to N, then

X�ω +dH =
k

∑
i=1

fiαi +dg, (8)

where α1, · · · ,αk are smooth 1-forms on M, H, f1, · · · , fk,g are smooth functions on M such
that f1|N = · · ·= fk|N = g|N = 0. But this can be written in the following way:

X�ω +d (H −g) =
k

∑
i=1

fiαi, (9)

which implies that X is Hamiltonian on N.

The above definition and proposition are the motivation for the following definition of the
symplectic vector field on N:
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Definition 5. A smooth vector field X on M is called symplectic on N if LX ω has zero
algebraic restriction to N.

It is obvious that a vector field, which is Hamiltonian on N, is symplectic on N. The
inverse implication is not always true. The necessary and sufficient conditions are given in
the following proposition:

Proposition 6. The vector field-germ X is Hamiltonian on N if and only if X is symplectic
on N and LX ω define the zero cohomology class in H2(N,M).

Corollary 7. If H2(N,M) = {0}, then any symplectic vector field-germ on N is Hamiltonian
on N.

Definition 8. The germ at 0 of a set N ⊂ R
m is called quasi-homogeneous if there exist

a local coordinate system x1, . . . ,xm and positive numbers λ1, . . . ,λm such that the following
holds: if a point with coordinates xi = ai belongs to N, then for any t ∈ [0,1] the point with
coordinates xi = tλiai also belongs to N.

It was proved that if N is quasi-homogeneous, then Hk(N,M) = {0} for k > 0. (e.g. see
[4]). It implies the following proposition:

Proposition 9. If N is quasi-homogeneous, then any symplectic vector field-germ on N is
Hamiltonian on N.

4. GERMS OF HAMILTONIAN VECTOR FIELDS ON
SMOOTH SUBMANIFOLDS

If S is a smooth submanifold of M, then a smooth k-form α on M has zero algebraic
restriction to M if and only if the pullback of α to M vanishes. Thus, we obtain the following
result:

Corollary 10. Let S be a smooth submanifold of M. Let ι : S ↪→ M be an embedding of S.
A smooth vector field X on M is Hamiltonian on S if and only if there exists a smooth function
H on M such that

ι∗(X�ω) = d(H ◦ ι). (10)

Thus, by the above corollary we obtain the following:

ω(X(x),v) = −dH(v), for every x ∈ S, and for every v ∈ TxS. (11)

It means that if the vector field X is Hamiltonian on a smooth submanifold S of M, then X is
a section of the bundle L.

By Poincare Lemma and Corollary 10 we have

Proposition 11. Let S be a smooth submanifold of M. Let ι : S ↪→ M be an embedding of S.
A smooth vector field X on M is Hamiltonian on S if and only if d(ι∗(X�ω)) = 0.
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4.1. SYMPLECTIC SUBMANIFOLDS

Let S be the germ of a symplectic submanifold of dimension 2k of the symplectic man-
ifold (R2n,ω = ∑n

i=1 dxi ∧ dyi). Then, by the Darboux-Givental Theorem (see [1]), S is
symplectomorphic to

S0 = {(x,y) ∈ R
2n|xi = yi = 0 for i = k+1, · · · ,n}.

If (x̃, ỹ) = (x1, · · · ,xk,y1, · · · ,yk) and ι : S � (x̃, ỹ) �→ (x̃,0, ỹ,0) ∈ R2n, then a smooth vector
field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂
∂yi

at 0 on R2n is Hamiltonian on S0 if d(ι∗(X�ω) = 0.

It implies that d(∑k
i=1 fi(x̃,0, ỹ,0)dyi −gi(x̃,0, ỹ,0)dxi) = 0. Thus, the vector field-germ

X̃ =
k

∑
i=1

fi(x̃,0, ỹ,0))
∂

∂xi
+gi(x̃,0, ỹ,0))

∂
∂yi

on S0 is Hamiltonian on a symplectic manifold (S0, ι∗ω = ∑k
i=1 dxi ∧dyi). Let us notice that

X̃ |π(x,y) = π∗(X |(x,y)), where π : R2n � (x,y) �→ (x̃, ỹ) ∈ S0. Since π ◦ ι = IdS0 , we obtain the
following proposition:

Proposition 12. A smooth vector field-germ X on (R2n,ω) is Hamiltonian on the symplectic
submanifold-germ S0, if the vector field-germ π∗(X ◦ ι) on S0 is Hamiltonian on the symplec-
tic manifold (S0, ι∗ω).

4.2. COISOTROPIC SUBMANIFOLDS

Let C be the germ of a coisotropic submanifold of codimension k of the symplectic man-
ifold (R2n,ω = ∑n

i=1 dxi ∧ dyi). Then, by the Darboux-Givental Theorem (see [1]), C is
symplectomorphic to

C0 = {(x,y) ∈ R
2n|xi = 0 for i = 1, · · · ,k}.

If x̃ = (xk+1, · · · ,xn) and ι : C0 � (x̃,y) �→ (0, x̃,y) ∈ R2n, then a smooth vector field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂
∂yi

at 0 on R2n is Hamiltonian on C0 if d(ι∗(X�ω) = 0. It implies that the 1-form-germ

ι∗(X�ω) =
n

∑
i=1

fi(0, x̃,y)dyi −
k

∑
i=k+n

gi(0, x̃,y)dxi
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on C0 is exact. Hence, there exists a smooth function-germ on C0 such that gi(0, x̃,y) =
− ∂h

∂xi
(x̃,y) for i = k+1, · · · ,n and fi(0, x̃,y) = ∂h

∂yi
(x̃,y) for i = 1, · · · ,n. Thus, we obtain the

following proposition:

Proposition 13. A smooth vector field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂
∂yi

on (R2n,ω = ∑n
i=1 dxi ∧dyi) is Hamiltonian on the coisotropic submanifold-germ

C0 = {(x,y) ∈ R
2n| xi = 0 for i = 1, · · · ,k},

if there exists a smooth function germ h on C0 such that gi(0, x̃,y) = − ∂h
∂xi

(x̃,y) for

i = k+1, · · · ,n and fi(0, x̃,y) = ∂h
∂yi

(x̃,y) for i = 1, · · · ,n.

4.3. ISOTROPIC SUBMANIFOLDS

Let I be the germ of an isotropic submanifold of dimension k of the symplectic manifold
(R2n,ω = ∑n

i=1 dxi ∧dyi). Then, by the Darboux-Givental Theorem (see [1]), I is symplec-
tomorphic to

I0 = {(x,y) ∈ R
2n|y = 0, xi = 0 for i = k+1, · · · ,n}.

If x̃ = (x1, · · · ,xk) and ι : I0 � x̃ �→ (x̃,0) ∈ R
2n, then a smooth vector field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂
∂yi

at 0 on R2n is Hamiltonian on I0 if d(ι∗(X�ω) = 0. It implies that the 1-form-germ

ι∗(X�ω) = −
k

∑
i=1

gi(x̃,0)dxi

on I0 is exact. Hence, there exists a smooth function-germ on I0 such that gi(x̃,0) = ∂h
∂xi

(x̃)
for i = 1, · · · ,k. Thus, we obtain the following proposition:

Proposition 14. A smooth vector field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂
∂yi

on (R2n,ω = ∑n
i=1 dxi ∧dyi) is Hamiltonian on the isotropic submanifold

I0 = {(x,y) ∈ R
2n|y = 0, xi = 0 for i = k+1, · · · ,n},

if there exists a smooth function-germ h on I0 such that gi(x̃,0) = ∂h
∂xi

(x̃) for i = 1, · · · ,k.
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In particular by Proposition 11 we obtain

Corollary 15. If C is a regular curve (1-dimensional smooth submanifold), then any smooth
vector field-germ on R

2n is Hamiltonian.

Proof. Any smooth 1-form on C is closed.

5. GERMS OF HAMILTONIAN VECTOR FIELDS ON
SINGULAR CURVES

In this section we describe germs of Hamiltonian vector fields on singular curves at a sin-
gular point. By Corollary 15 any smooth vector field-germ is Hamiltonian on a regular curve.

PLANAR CURVES OF TYPES AK,DK,E6,E7,E8

A planar curve in the symplectic space (R2n,ω) is a curve which is embedded in a smooth
2-dimensional submanifold S of (R2n,ω). Let ι : S ↪→ R

2n be an embedding of S.

We assume that the germ of the curve is locally diffeomorphic to N = {x ∈R2n|G(x1,x2)=
x≥3 = 0}, where G has the following properties:

1. G(0,0) = 0, dG(0,0) = 0,

2. the ideal of smooth function-germs on R2 vanishing on {(x1,x2) ∈ R2|G(x1,x2) = 0}
is generated by G.

3. G is quasi-homogeneous polynomial.

Then, we can take locally S = {x ∈ R2n|x≥3 = 0} and ι(x3, · · · ,x2n) = (0,0,x3, · · · ,x2n).
A smooth vector field-germ on (R2n,ω) is Hamiltonian on N if and only if d(ι∗(X�ω)) =
d(G(x1,x2)α) for some smooth 1-form-germ α on R

2.

By Theorem 4.11 in [5] any curve-germ in the symplectic space (R2n,ω0 = ∑n
i=0 d pi ∧

dqi), n ≥ 2, which is diffeomorphic to the curve-germ at 0 {x ∈R
2n|G(x1,x2) = x≥3 = 0} for

smooth function-germs G in Tab. 1 is symplectomorphic to one and only one of the following
curve-germs:

Ni = {(p,q) ∈ R
2n|G(p1, p2) = q1 −

∫ p2

0
Fi(p1, t)dt = q≥2 = p≥3 = 0} ⊂ (R2n,ω0), (12)

for i = 0, · · · ,μ , where smooth function-germs Fi are presented in Tab. 1.
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Table 1
Classification of the algebraic restrictions to Ak,Dk,E6,E7,E8

G(x1,x2) Fi(x1,x2), i = 0,1, . . . ,μ

Ak : xk+1
1 − x2

2
k ≥ 1

F0 = 1
Fi = xi

1, i = 1, . . . ,k−1
Fk = 0

Dk : x2
1x2 − xk−1

2
k ≥ 4

F0 = 1
Fi = bx1 + xi

2, i = 1, . . . ,k−4
Fk−3 = (±1)kx1 +bxk−3

2 ,
Fk−2 = xk−3

2 , Fk−1 = xk−2
2 , Fk = 0

E6 : x3
1 − x4

2 F0 = 1, F1 = ±x2 +bx1, F2 = x1 +bx2
2,

F3 = x2
2 +bx1x2, F4 = ±x1x2, F5 = x1x2

2, F6 = 0

E7 : x3
1 − x1x3

2 F0 = 1, F1 = x2 +bx1, F2 = ±x1 +bx2
2,

F3 = x2
2 +bx1x2, F4 = ±x1x2 +bx3

2,
F5 = x3

2, F6 = x4
2, F7 = 0

E8 : x3
1 − x5

2 F0 = ±1, F1 = x2 +bx1, F2 = x1 +b1x2
2 +b2x3

2
F3 = ±x2

2 +bx1x2, F4 = ±x1x2 +bx3
2,

F5 = x3
2 +bx1x2

2, F6 = x1x2
2, F7 = ±x1x3

2, F8 = 0

Let ι : R2 → R
2n be the following map-germ: ι(p1, p2) = (p1,

∫ p2
0 Fi(p1, t)dt, p2,0).

A smooth vector field-germ

X =
n

∑
i=1

fi(p1,q1, · · · , pn,qn)
∂

∂ pi
+gi(p1,q1, · · · , pn,qn)

∂
∂qi

on (R2n,ω0 = ∑n
i=1 d pi ∧dqi) is Hamiltonian on Ni if a smooth 2-form-germ at 0 on R2

σ = r(p1, p2)d p1 ∧d p2 = d
(
( f1 ◦ ι)d(

∫ p2

0
Fi(p1, t)dt)− (g1 ◦ ι)d p1 − (g2 ◦ ι)d p2

)
has zero algebraic restriction to {(p1, p2) ∈ R

2|G(p1, p2) = 0}.

By the direct calculation we obtain that

r(p1, p2) =
(

∂g1
∂ p2

− ∂g2
∂ p1

)
(p1,

∫ p2
0 Fi(p1, t)dt, p2,0) (13)

+Fi(p1, p2)
(

∂ f1
∂ p1

+ ∂g1
∂q1

)
(p1,

∫ p2
0 Fi(p1, t)dt, p2,0)

−∫ p2
0

∂Fi
∂ p1

(p1, t)dt
(

∂ f1
∂ p2

+ ∂g2
∂q1

)
(p1,

∫ p2
0 Fi(p1, t)dt, p2,0).

If G is quasi-homogeneous, then a smooth 2-form r(p1, p2)d p1 ∧ d p2 has zero algebraic
restriction to {(p1, p2) ∈ R

2|G(p1, p2) = 0} if and only if r belongs to the ideal < ∇G >
generated by ∂G

∂ p1
(p1, p2), ∂G

∂ p2
(p1, p2) (see [5]).

Thus, we obtain the following proposition:
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Proposition 16. A smooth vector field-germ

X =
n

∑
j=1

f j(p,q)
∂

∂ p j
+g j(p,q)

∂
∂q j

is Hamiltonian on

Ni = {(p,q) ∈ R
2n|G(p1, p2) = q1 −

∫ p2

0
Fi(p1, t)dt = q≥2 = p≥3 = 0} ⊂ (R2n,ω0),

where G and Fi are presented in Tab. 1, if and only if the function-germ r given by (13)
belongs to the ideal < ∇G >.

5.1. PLANAR CURVES OF TYPES AI
K

By Proposition 16 we obtain the following:

Proposition 17. Let us fix k ∈ N and i = 0,1, · · · ,k. A smooth vector field-germ

X =
n

∑
j=1

f j(p,q)
∂

∂ p j
+g j(p,q)

∂
∂q j

on (R2n,ω0 = ∑n
j=1 d p j ∧dq j) is Hamiltonian on

Ai
k = {(p,q) ∈ R

2n|pk+1
1 − p2

2 = q1 − pi
1 p2 = q≥2 = p≥3 = 0} (i = 0,1, · · · ,k−1)

or on
Ak

k = {(p,q) ∈ R
2n|pk+1

1 − p2
2 = q≥1 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0) for j = 0, · · · , i−1,

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0)− j!
( j − i)!

(
∂ j−i+1 f1

∂ p j−i+1
1

(0)+
∂ j−i+1g2

∂ p j−i
1 ∂q1

(0)

)
for j = i, · · · ,k−1.

Proof. For a planar curve of type Ai
k (k ≥ 1, i= 0, · · · ,k) , we have that G(p1, p2) = pk+1

1 − p2
2

and Fi(p1, p2) = pi
1 for i = 0, · · · ,k−1 and Fk(p1, p2) = 0 (see Tab. 1).

For A0
k singularity we have

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1
+

∂ f1

∂ p1
+

∂g1

∂q1

)
(p1, p2, p2,0).
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For Ai
k singularity i = 1, · · · ,k−1 the function-germ r has the following form:

r(p1, p2) =
(

∂g1
∂ p2

− ∂g2
∂ p1

)
(p1, pi

1 p2, p2,0) (14)

+pi
1

(
∂ f1
∂ p1

+ ∂g1
∂q1

)
(p1, pi

1 p2, p2,0)

−ipi−1
1 p2

(
∂ f1
∂ p2

+ ∂g2
∂q1

)
(p1, pi

1 p2, p2,0).

For Ak
k singularity we get Fk(p1, p2) = 0 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1

)
(p1,0, p2,0).

Since < ∇G >=< pk
1, p2 >, it is easy to see that O2/ < ∇G >∼= R

{
1, p1, · · · , pk−1

1

}
. The

function-germ r belongs to < ∇G > if and only if ∂ jr
∂ p j

1
(0,0) = 0 for j = 0,1, · · · ,k − 1. By

a direct calculation we get that for j = 0, · · · , i−1

∂ jr

∂ p j
1

(0,0) =
∂ j+1g1

∂ p j
1∂ p2

(0)− ∂ j+1g2

∂ p j+1
1

(0),

and for j = i, · · · ,k−1

∂ jr

∂ p j
1

(0,0) =
∂ j+1g1

∂ p j
1∂ p2

(0)− ∂ j+1g2

∂ p j+1
1

(0)+
j!

( j − i)!

(
∂ j−i+1 f1

∂ p j−i+1
1

(0)+
∂ j−i+1g2

∂ p j−i
1 ∂q1

(0)

)
.

5.2. PLANAR CURVES OF TYPES DI
K

For a planar curve of type Di
k ( k ≥ 4, i = 0, · · · ,k ) we have that G(p1, p2) = p2

1 p2 − pk−1
2 .

Then it is easy to see that < ∇G >=< p1 p2, p2
1 − (k−1)pk−2

2 > and

O2/ < ∇G >∼= R

{
1, p2, · · · , pk−2

2 , p1

}
.

For D0
k singularity we get F0(p1, p2) = 1 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1
+

∂ f1

∂ p1
+

∂g1

∂q1

)
(p1, p2, p2,0).

For Di
k singularity i = 1, · · · ,k−4 we get Fi(p1, p2) = bp1 + pi

2 and

r(p1, p2) =
(

∂g1
∂ p2

− ∂g2
∂ p1

)
(p1,bp1 p2 +

pi+1
2

i+1 , p2,0) (15)

+(bp1 + pi
2)
(

∂ f1
∂ p1

+ ∂g1
∂q1

)
(p1,bp1 p2 +

pi+1
2

i+1 , p2,0)

−bp2

(
∂ f1
∂ p2

+ ∂g2
∂q1

)
(p1,bp1 p2 +

pi+1
2

i+1 , p2,0).
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For Dk−3
k singularity we have Fk−3(p1, p2) = (±1)k p1 +bpk−3

2 and

r(p1, p2) =
(

∂g1
∂ p2

− ∂g2
∂ p1

)
(p1,(±1)k p1 p2 +b pk−2

2
k−2 , p2,0) (16)

+((±1)k p1 +bpk−3
2 )

(
∂ f1
∂ p1

+ ∂g1
∂q1

)
(p1,(±1)k p1 p2 +b pk−2

2
k−2 , p2,0)

−(±1)k p2

(
∂ f1
∂ p2

+ ∂g2
∂q1

)
(p1,(±1)k p1 p2 +b pk−2

2
k−2 , p2,0).

For Dk−2
k singularity we get Fk−2(p1, p2) = pk−3

2 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1

)
(p1,

pk−2
2

k−2
, p2,0)+ pk−3

2

(
∂ f1

∂ p1
+

∂g1

∂q1

)
(p1,

pk−2
2

k−2
, p2,0).

For Dk−1
k singularity we get Fk−2(p1, p2) = pk−2

2 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1

)
(p1,

pk−1
2

k−1
, p2,0)+ pk−2

2

(
∂ f1

∂ p1
+

∂g1

∂q1

)
(p1,

pk−1
2

k−1
, p2,0).

For Dk
k singularity we get Fk(p1, p2) = 0 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1

)
(p1,0, p2,0).

The function-germ r belongs to < ∇G >=< p1 p2, p2
1 − (k−1)pk−2

2 > if and only if

∂ jr

∂ p j
2

(0,0) =
∂ r

∂ p1
(0,0) = 0 for j = 0,1, · · · ,k−3 (17)

and
∂ 2r
∂ p2

1
(0,0) =

2
(k−1)!

∂ k−2r
∂ pk−2

2

(0,0). (18)

For general k conditions (17)-(18) are rather complicated in terms of partial derivatives of
coefficient functions f1, g1, g2 at 0. Therefore, we will present them only for Di

4 singularities
for i = 0,1, · · · ,4.

Let X = ∑n
j=1 f j(p,q) ∂

∂ p j
+ g j(p,q) ∂

∂q j
be the smooth vector field-germ on (R2n,ω0 =

∑n
j=1 d p j ∧dq j). By a direct calculation Proposition 16 implies the following:

The vector field-germ X is Hamiltonian on

D0
4 = {(p,q) ∈ R

2n|p2
1 p2 − p3

2 = q1 − p2 = q≥2 = p≥3 = 0}

if and only if the following conditions are satisfied:
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∂ j+1g2

∂ p j+1
1

(0) =
∂ j+1g1

∂ p j
1∂ p2

(0)+
∂ j+1g1

∂ p j
1∂q1

(0)+
∂ j+1 f1

∂ p j+1
1

(0) for j = 0,1,

∂ 2g1

∂ p2
2
(0)+2

∂ 2g1

∂q1∂ p2
(0)+

∂ 2g1

∂q2
1
(0)+

∂ 2 f1

∂ p1∂ p2
(0)

− ∂ 2g2

∂ p1∂ p2
(0)+

∂ 2 f1

∂ p1∂q1
(0)− ∂ 2g2

∂ p1∂q1
(0) = 0,

3
(

∂ 3g1

∂ p2
1∂ p2

(0)+
∂ 3g1

∂ p2
1∂q1

(0)+
∂ 3 f1

∂ p3
1
(0)− ∂ 3g2

∂ p3
1
(0)
)

=
∂ 3g1

∂ p3
2
(0)+3

∂ 3g1

∂q1∂ p2
2
(0)+3

∂ 3g1

∂q2
1∂ p2

(0)+
∂ 3g1

∂q3
1
(0)+

∂ 3 f1

∂ p1∂ p2
2
(0)− ∂ 3g2

∂ p1∂ p2
2
(0)

+2
∂ 3 f1

∂ p1∂q1∂ p2
(0)−2

∂ 3g2

∂ p1∂q1∂ p2
(0)+

∂ 3 f1

∂ p1∂q2
1
(0)− ∂ 3g2

∂ p1∂q2
1
(0).

The vector field-germ X is Hamiltonian on

D1
4 = {(p,q) ∈ R

2n|p2
1 p2 − p3

2 = q1 − p1 p2 −b
p2

2
2

= q≥2 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂g1

∂ p2
(0) =

∂g2

∂ p1
(0),

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)+

∂ 2g1

∂ p1∂ p2
(0)− ∂ 2g2

∂ p2
1
(0) = 0,

− ∂ f1

∂ p2
(0)+

∂ 2g1

∂ p2
2
(0)− ∂g2

∂q1
(0)+b

(
∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)
)

− ∂ 2g2

∂ p1∂ p2
(0) = 0,

6
(

∂ 2g1

∂ p1∂q1
(0)+

∂ 2 f1

∂ p2
1
(0)
)
+3
(

∂ 3g1

∂ p2
1∂ p2

(0)− ∂ 3g2

∂ p3
1
(0)
)

=
∂ 3g1

∂ p3
2
(0)− ∂ 3g2

∂ p1∂ p2
2
(0)−2

(
∂ 2 f1

∂ p2
2
(0)+

∂ 2g2

∂q1∂ p2
(0)
)

+b
(

3
∂ 2g1

∂ p1∂ p2
(0)+2

∂ 2 f1

∂ p1∂ p2
(0)− ∂g2

∂ p1
∂q1(0)

)
.
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The vector field-germ X is Hamiltonian on

D2
4 = {(p,q) ∈ R

2n|p2
1 p2 − p3

2 = q1 − p2
2

2
= q≥2 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0) for j = 0,1,

∂ 2g1

∂ p2
2
(0)+

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)− ∂ 2g2

∂ p1∂ p2
(0) = 0,

3
(

∂ 3g1

∂ p2
1∂ p2

(0)− ∂ 3g2

∂ p3
1
(0)
)
=

∂ 3g1

∂ p3
2
(0)+

∂ 2g1

∂q1∂ p2
(0)+2

(
∂ 2g1

∂q1∂ p2
(0)+

∂ 2 f1

∂ p1∂ p2
(0)
)

− ∂ 3g2

∂ p1∂ p2
2
(0)− ∂ 2g2

∂ p1∂q1
(0).

The vector field-germ X is Hamiltonian on

D3
4 = {(p,q) ∈ R

2n|p2
1 p2 − p3

2 = q1 − p3
2

3
= q≥2 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0) for j = 0,1,

∂ 2g1

∂ p2
2
(0) =

∂ 2g2

∂ p1∂ p2
(0),

3
(

∂ 3g1

∂ p2
1∂ p2

(0)− ∂ 3g2

∂ p3
1
(0)
)
=

∂ 3g1

∂ p3
2
(0)+2

(
∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)
)

− ∂ 3g2

∂ p1∂ p2
2
(0).

The vector field-germ X is Hamiltonian on

D4
4 = {(p,q) ∈ R

2n|p2
1 p2 − p3

2 = q≥1 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0) for j = 0,1,
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∂ 2g1

∂ p2
2
(0) =

∂ 2g2

∂ p1∂ p2
(0),

3
(

∂ 3g1

∂ p2
1∂ p2

(0)− ∂ 3g2

∂ p3
1
(0)
)
=

∂ 3g1

∂ p3
2
(0)− ∂ 3g2

∂ p1∂ p2
2
(0).

In the same way by Proposition 16 one can obtain the necessary and sufficient conditions
for the vector field-germ X to be Hamiltonian on planar curves with Ei

k singularities for
k = 6,7,8 and i = 0,1, · · · ,k (see Tab. 1). Please notice that for Ei

k singularity there are k
independent conditions, therefore we do not present them.

6. GERMS OF HAMILTONIAN VECTOR FIELDS ON
REGULAR UNION SINGULARITIES.

A regular union singularity N at 0 in R2n is the union

N = N1 ∪·· ·∪Ns, s ≥ 2 (19)

of germs at 0 of smooth submanifolds N1, · · · ,Ns of R2n (in what follows - strata) such that
the dimension of the space

W = T0N1 + · · ·+T0Ns (20)

is equal to the sum of the dimensions of the strata, i.e. the sum (20) is direct. If the number
of strata and their dimensions are fixed, then all such N are diffeomorphic. By Theorem 7.1
in [5] the germ of a closed 2-form σ has zero algebraic restriction to N if and only if its
pullback to each of the strata Ni (i = 1, · · · ,s) vanishes and the restriction of the germ σ to
the space W vanishes. It implies the following:

Proposition 18. A smooth vector field-germ X in the symplectic space (R2n,ω) is Hamilto-
nian on a regular union singularity N if and only if the pullback of the germ d(X�ω) to each
of the strata Ni (i = 1, · · · ,s) vanishes and the restriction of the germ d(X�ω) to the space W
vanishes.

6.1. REGULAR UNION OF THREE 1-DIMENSIONAL
SUBMANIFOLDS

Let us consider a regular union singularity of three germs at 0 of 1-dimensional submani-
folds N = N1 ∪N2 ∪N3 of the symplectic space (R2n,ω = ∑n

i=1 d pi ∧dqi). These symplectic
singularities are classified in [5].
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Proposition 19 (Theorem 7.4 in [5]). Any regular union singularity N with three
1-dimensional strata in the symplectic space (R2n,ω), n ≥ 3 (resp. n = 2) is symplectomor-
phic to one and only one of the varieties N0,N1,N2,N3 (resp. N0,N1,N2) given in Tab. 2. It
holds if and only if the pair (ω,N) satisfies the condition in the last column of the table.

Table 2
Classification of symplectic regular union singularities with three

1-dimensional strata. W denotes the 3-space spanned by the tangent
lines at 0 to the strata

Symplectic normal forms Geometric condition
N0 q2 = p1 + p2,

p1q1 = q1 p2 = p2q2 = 0,
p≥3 = q≥3 = 0

ω|W = 0,
kerω|W ⊂ T0Ni +T0Nj,
for any i, j ∈ {1,2,3};

N1 q2 = p1,
p1q1 = q1 p2 = p2 p1 = 0,
p≥3 = q≥3 = 0

ω|W = 0,
kerω|W ⊂ T0Ni +T0Nj,
kerω|W = T0Ni,T0Nj
for some i, j ∈ {1,2,3};

N2 p1q1 = q1 p2 = p2 p1 = 0, p≥3 =
q≥2 = 0

ω|W = 0,
kerω|W = T0Ni
for some i ∈ {1,2,3}

N3 p1 p2 = p2 p3 = p3 p1 = 0, p≥4 =
q≥1 = 0

ω|W = 0.

Since the strata are 1-dimensional, by Proposition 18, a smooth vector-field germ X is
Hamiltonian on N if and only if d(X�ω)|W = 0. Hence for singularities Ni for i = 0,1, · · · ,3
we obtain the following conditions:

Let X = ∑n
i=1 fi(p,q) ∂

∂ pi
+gi(p,q) ∂

∂qi
be a smooth vector field-germ on R

2n.
The vector field-germ X is Hamiltonian on N0 if and only if

∂ f1

∂q2
(0)+

∂ f1

∂ p2
(0)− ∂ f2

∂q1
(0)+

∂g2

∂q1
(0) = 0,

∂ f2

∂q1
(0)+

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)+

∂ f2

∂q1
(0) = 0,

∂g1

∂q2
(0)− ∂g2

∂q2
(0)− ∂ f2

∂ p2
(0)+

∂g1

∂ p2
(0)+

∂ f2

∂ p1
(0)− ∂g2

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N1 if and only if

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂ f1

∂q2
(0)+

∂ f2

∂q1
(0)+

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) = 0,
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∂g1

∂ p2
(0)− ∂g2

∂q2
(0)− ∂ f2

∂ p2
(0)− ∂g2

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N2 if and only if

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂ p2
(0)− ∂g2

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N3 if and only if

∂g2

∂ p3
(0)− ∂g3

∂ p2
(0) =

∂g1

∂ p2
(0)− ∂g2

∂ p1
(0) =

∂g1

∂ p3
(0)− ∂g3

∂ p1
(0) = 0.

6.2. REGULAR UNION OF TWO 2-DIMENSIONAL ISOTROPIC
SUBMANIFOLDS

Now we consider the regular union singularity of two 2-dimensional isotropic submanifold-
germs of the symplectic space. The following classification proposition was proved in [5]:

Proposition 20. Any regular union singularity N of two 2-dimensional isotropic submanifold-
germs in a symplectic space (R2n,ω = ∑n

i=1 d pi ∧dqi) is symplectomorphic to one and only
one of the varieties N0,N1,N4 in Tab. 3. The orbit of Ni has codimension i in the class of
all regular union singularities with two 2-dimensional isotropic strata. The normal form Ni

holds if and only if the pair (ω,N) satisfies the condition given in the last column of Tab. 3.

Table 3
Classification of symplectic regular union singularities of two 2-dimensional
isotropic submanifold-germs. W denotes the 4-space spanned by the tangent

planes at 0 to the strata

Symplectic normal forms Geometric condition codim

N0 {p≥3 = q≥1 = 0}∪
{p≥1 = q≥3 = 0} rank ω|W = 4 0

N1 ( n ≥ 3)
{p≥3 = q≥1 = 0}∪
{p≥1 = q2 = q≥4 = 0} rank ω|W = 2 1

N4 ( n ≥ 4 )
{p≥3 = q≥1 = 0}∪

{p1 = p2 = p≥5 = q≥1 = 0} ω|W = 0 4

By Proposition 18 a smooth vector field-germ X is Hamiltonian on N if and only if X is
Hamiltonian on both of isotropic submanifold-germs N1, N2 and d(X�ω)|W = 0.

Let X = ∑n
i=1 fi(p,q) ∂

∂ pi
+gi(p,q) ∂

∂qi
be a smooth vector field-germ on R

2n. By Proposi-
tions 18 and 14 we obtain the following conditions:
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The vector field-germ X is Hamiltonian on N0 = N0
1 ∪N0

2 if and only if there exist a smooth
function-germs h on N0

1 = {p≥3 = q≥1 = 0} and k on N0
2 = {q≥3 = p≥1 = 0} such that

gi(p1, p2,0) = ∂h
∂ pi

(p1, p2) and fi(0,q1,q2,0) = ∂k
∂qi

(q1,q2) for i = 1,2, and

∂g2

∂q2
(0)+

∂ f2

∂ p2
(0) =

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂q2
(0)+

∂ f2

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N1 =N1
1 ∪N1

2 if and only if there exist a smooth
function-germs h on N1

1 = {p≥3 = q≥1 = 0} and k on N1
2 = {p≥1 = q2 = q≥4 = 0} such that

gi(p1, p2,0) = ∂h
∂ pi

(p1, p2) for i = 1,2 and f j(0,q1,0,q3,0) = ∂k
∂q j

(q1,q3) for j = 1,3, and

∂g2

∂q3
(0)+

∂ f3

∂ p2
(0) =

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂q3
(0)+

∂ f3

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N4 =N4
1 ∪N4

2 if and only if there exist a smooth
function-germs h on N4

1 = {p≥3 = q≥1 = 0} and k on N4
2 = {p1 = p2 = p≥5 = q≥1 = 0} such

that gi(p1, p2,0) = ∂h
∂ pi

(p1, p2) for i = 1,2 and g j(0, p3, p4,0) = ∂k
∂ p j

(p3, p4) for j = 3,4, and

∂g2

∂ p3
(0)− ∂g3

∂ p2
(0) =

∂g2

∂ p4
(0)+

∂g4

∂ p2
(0) =

∂g1

∂ p3
(0)− ∂g3

∂ p1
(0) =

∂g1

∂ p4
(0)− ∂g4

∂ p1
(0) = 0.

6.3. REGULAR UNION OF TWO 2-DIMENSIONAL SYMPLECTIC
SUBMANIFOLDS

In this subsection we consider Hamiltonian vector field-germs on regular union singular-
ities with two 2-dimensional symplectic strata in a symplectic space (R2n,ω). Recall that
two germs of submanifolds N1,N2 of a symplectic space (R2n,ω) are called ω-orthogonal
if ω(v,u) = 0 for any vectors v ∈ T0N1,u ∈ T0N2. The symplectic classification of such N
involves the following invariant:

Definition 21 (see Definition 7.6 in [5]). The index of non-orthogonality between 2-dimen-
sional symplectic submanifolds N1 and N2 of a symplectic space (R2n,ω) is the number

α = α(N1,N2) = 1− (ω ∧ω)(v1,v2,u1,u2)

2 ·ω(v1,v2) ·ω(u1,u2)

where v1,v2 is a basis of T0N1 and u1,u2 is a basis of T0N2.

It is easy to see that the index of non-orthogonality α(N1,N2) is well-defined, i.e. it does
not depend on the choice of the bases of T0N1 and T0N2. It is equal to 0 if and only if there
exists a non-zero vector u ∈ T0N1 such that ω(v,u) = 0 for any v ∈ T0N2. It is equal to 1 if
and only if the 4-form ω ∧ω has zero restriction to the space W = T0N1 +T0N2.
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Theorem 22 (Theorem 7.9 in [5]). Let ω = ∑n
i=1 d pi ∧dqi. Let N = N1 ∪N2 be the regular

union singularity with two 2-dimensional symplectic strata in the symplectic space (R2n,ω).

If N1 and N2 are not ω-orthogonal, then N is symplectomorphic to the variety

Nα = {q1 = p2, p1 = p≥3 = q≥3 = 0}∪{p2 = αq1, p≥3 = q≥2 = 0},

where α is the index of non-orthogonality between N1 and N2.

If N1 and N2 are ω-orthogonal, then N has is symplectomorphic to

N⊥ = {p≥2 = q≥2 = 0}∪{p1 = q1 = p≥3 = q≥3 = 0}.

If n ≥ 3, then any of the normal forms is realizable and if n = 2, then any of the normal
forms is realizable except the normal form N1.

Theorem 22 was generalized in [6] to regular union singularities of two germs of symplec-
tic or quasi-symplectic k-dimensional submanifolds of the symplectic space. For simplicity
we present the case k = 2 only.

By Proposition 18 a smooth vector field-germ X is Hamiltonian on N =N1∪N2 if and only
if X is Hamiltonian on both of symplectic submanifold-germs N1, N2 and d(X�ω)|W = 0.

Let X = ∑n
i=1 fi(p,q) ∂

∂ pi
+gi(p,q) ∂

∂qi
be a smooth vector field-germ on R

2n. By Proposi-
tions 18 and direct calculations we obtain the following proposition:

Proposition 23. The vector field-germ X is Hamiltonian on

Nα = {q1 = p2, p1 = p≥3 = q≥3 = 0}∪{p2 = αq1, p≥3 = q≥2 = 0}

if and only if (
−∂ f1

∂q2
+

∂g2

∂q2
+

∂ f2

∂ p2
+

∂ f2

∂q1

)
|{q1=p2,p1=p≥3=q≥3=0} = 0,

(
α

∂g1

∂ p2
+

∂g1

∂q1
+

∂ f1

∂ p1
−α

∂g2

∂ p1

)
|{p2=αq1,p≥3=q≥2=0} = 0,

∂g2

∂q2
(0)+

∂ f2

∂ p2
(0) =

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂q2
(0)+

∂ f2

∂ p1
(0) = 0,

∂ f1

∂q2
(0)− ∂ f2

∂q1
(0) =

∂g1

∂ p2
(0)− ∂g2

∂ p1
(0) = 0.

Let us denote the stata of N⊥ by

N⊥
1 = {p≥2 = q≥2 = 0}, N⊥

2 = {p1 = q1 = p≥3 = q≥3 = 0}.

In the same way we get the following result:
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Proposition 24. The vector field-germ X is Hamiltonian on N⊥ = N⊥
1 ∪N⊥

2 if and only if(
∂g1

∂q1
+

∂ f1

∂ p1

)
|N⊥

1
= 0, (21)

(
∂g2

∂q2
+

∂ f2

∂ p2

)
|N⊥

2
= 0, (22)

∂g2

∂q2
(0)+

∂ f2

∂ p2
(0) =

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂q2
(0)+

∂ f2

∂ p1
(0) = 0,

∂ f1

∂q2
(0)− ∂ f2

∂q1
(0) =

∂g1

∂ p2
(0)− ∂g2

∂ p1
(0) = 0.

The conditions (21)-(22) mean that the vector field-germ fi|N⊥
i

∂
∂ pi

+gi|N⊥
i

∂
∂qi

on the sym-

plectic manifold-germ (N⊥
i ,ω|T N⊥

i
) is Hamiltonian (in the classical sense) for i = 1,2 (see

Proposition 12).
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Abstract: We prove that, if a metric space (X ,ρ) can be endowed with the intrinsic metric ρ∗ (the
intrinsic distance of two points is defined as the infimum of the lengths of arcs joining these points), then
the Hausdorff metric ρH in the space C(X) of compact subsets of X induces the intrinsic metric (ρH)

∗, and
the equality

(ρH)
∗ = (ρ∗)H

is satisfied. This implies that ρH = (ρH)
∗ if and only if ρ∗ = ρ and that each isometry between spaces X1

and X2 with intrinsic metrics induces an isometry between C(X1) and C(X2) with intrinsic metrics.
Keywords: intrinsic metric, intrinsic isometry, hyperspace of compact sets, Hausdorff metric, arcs in hy-
perspace of compact sets
Mathematics Subject Classification (2020): 54E40, 54E35

1. INTRODUCTION

Let (X ,ρ) be a strongly arc-wise connected metric space i.e. a space in which every two
points can be joined by an arc of finite length. Then X can be endowed with the intrinsic
metric ρ∗ in which the distance of any two points is measured as the infimum of the lengths
of arcs joining these points (see Section 2). The notion of intrinsic metric was widely inves-
tigated. Let us mention only the Blumenthal notion of geodesic ([4] p. 70) and his notion of
convexification of a metric space ([4], p. 72 Ex. 1-4); the Borsuk geometrically acceptable
(GA) metric spaces i.e. spaces with metric ρ∗ topologically equivalent to ρ (compare [2], [4]
p. 72 Ex. 4, [10], [11],); and the Burago length spaces ([5]). The Burago length space in-
duced by a strongly arc-wise connected metric space (X ,ρ) coincides with the space (X ,ρ∗)
([5], Section 2.3).
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We concentrate our investigation on hyper-space C(X) of compact subsets of X endowed
with the Hausdorff metric ρH . The geometry of hyper-spaces of compact subsets has been
largely developed in last few decades (mostly for X = Rn), see [16], [15], [14], [1], [12], [6].
However, very little is known about arcs in hyper-spaces of compact subsets. Only metric
segments in hyper-space C(Rn) have been intensively investigated by many authors ([13],
[17], [6], [19]). Basic proofs of the existence of arcs in C(X) for metric continuum X can be
found in [14], Ch.V, §47, VII (consult the references therein as well). Recently, some results
concerning arcs in hyper-spaces were obtained in [8].

We shall prove that, if (X ,ρ) is geometrically acceptable, then so is (C(X),ρH) and the
equality

(ρH)
∗ = (ρ∗)H (1)

is satisfied i.e. the following diagram is commutative:

(X ,ρ) �H

�
*

(X ,ρ∗)

(C(X),ρH)

�H
�

*

(C(X),(ρ∗)H)

There are no good methods to calculate the lengths of arcs in hyper-spaces of compact sets.
Our result allows us to omit this problem and find (ρH)

∗ by calculating lengths of arcs in the
space X .

As an immediate consequence of (1) we obtain (see Corollary 13)

ρ = ρ∗ in X if and only if ρH = (ρH)
∗ in C(X).

The analogous result for the space of bounded and closed subsets of a metric space, with the
Hausdorff metric was proved in [20].

2. PRELIMINARIES

In this section we shall remind the basic notions of intrinsic geometry and of geometry of
hyper-space of compact sets, we shall need in the sequel.

Let (X ,ρ) be a metric space.

A subset of X isometric to a closed interval in R is a metric segment in X (by some authors:
a geodesic segment, comp. [7]). We say that (X ,ρ) is metrically convex (by some authors:
a geodesic metric space, comp. [7]), if every pair of points x,y ∈ X can be joined by a metric
segment in X .
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A path in X is a continuous image of a closed interval. A subset of X homeomorphic to
a closed interval in R is an arc in X . For any path L joining points x and y in X we define the
length |L|ρ by

|L|ρ := sup{
k−1

∑
i=1

ρ(xi,xi+1) : i = 1,2..,k−1},

where sup is taken over all naturally ordered sequences x1,x2, ...xk of points in L, with x1 = x
and xk = y. A path is rectifiable if its length is finite.

We say that (X ,ρ) is strongly arc-wise connected if for every x,y ∈ X there exists a rectifiable
arc joining x and y in X .

Remark 1. If (X ,ρ1) and (X ,ρ2) are metric spaces, (X ,ρ1) is strongly arc-wise connected
and ρ1 ≥ ρ2, then (X ,ρ2) is strongly arc-wise connected.

In a strongly arc-wise connected metric space (X ,ρ) the function ρ∗ : X ×X −→ R given by
the formula

ρ∗(x,y) := inf{|L|ρ : L is an arc in X and x,y ∈ L}
is again a metric. It is called the intrinsic metric in (X ,ρ) ([2], [5], [11]).

Let us note that we do not require that for any two points in X an arc with the shortest
length exists. Since ρ ≤ ρ∗, the identity map from (X ,ρ∗) to (X ,ρ) is continuous, however
the metric ρ∗ need not be topologically equivalent to ρ . For instance, for a compact space
(X ,ρ) the space (X ,ρ∗) may be non-compact (for examples see [5]). Following Borsuk, we
say that a strongly arc-wise connected space (X ,ρ) is geometrically acceptable ((X ,ρ)∈ GA)
whenever ρ and ρ∗ are topologically equivalent i.e. the identity map from (X ,ρ) to (X ,ρ∗)
is a homeomorphism ([2]).

It can be easily shown that (ρ∗)∗ = ρ∗ and |L|ρ = |L|ρ∗ for any rectifiable arc L in X (compare
[5], Proposition 2.3.12).

For any strongly arc-wise connected space (X ,ρ) the metric ρ is intrinsic if ρ = ρ∗. If (X ,ρ)
is compact, strongly arc-wise connected and ρ is intrinsic, then (X ,ρ) is metrically convex
(compare [4], Theorem 28.1).

An intrinsic isometry of two GA spaces is an isometry with respect to their intrinsic met-
rics. Intrinsic isometries between GA spaces are homeomorphisms preserving lengths of arcs
([3]).

We shall consider the hyper-space Cρ(X) of compact subsets of X endowed with the Haus-
dorff metric ρH .

For any A, B in Cρ(X),

ρH(A,B) := max{sup
x∈A

inf
y∈B

ρ(x,y),sup
x∈B

inf
y∈A

ρ(x,y)}.

For every nonempty subset A ⊂ X and ε > 0, let

(A)ε = {x ∈ X : inf
a∈A

ρ(x,a) ≤ ε}.
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The set (A)ε is called the ε-hull of A.

It is well known that

ρH(A,B) = inf{α > 0 : A ⊂ (B)α and B ⊂ (A)α}.

If ρ1 and ρ2 are topologically equivalent metrics in X , then Cρ1(X) = Cρ2(X) and the induced
Hausdorff metrics (ρ1)H and (ρ2)H are topologically equivalent ([18], notes for section 1.8).
If it does not lead to a confusion, we shall write C(X) for short, instead of Cρ(X).

The convergence in the sense of the Hausdorff metric can be described in terms of convergent
sequences of points (compare [18], p. 69).

Theorem 2. The convergence limi→∞ Ai =A in C(X) is equivalent to the following conditions
taken together:

(i) each point in A is a limit of a sequence (xi)i∈N with xi ∈ Ai for i ∈ N;

(ii) the limit of any convergent sequence (xi j) j∈N with xi j ∈ Ai j

for j ∈ N belongs to A, and the sequence (Ai)i∈N is bounded.

Remark 3. If metrics ρ1, ρ2 in X are topologically equivalent and ρ1 ≤ ρ2, then
(ρ1)H ≤ (ρ2)H in C(X).

Remark 4. The space (X ,ρ) is compact if and only if the space (C(X),ρH) is compact.

(compare [14], p. 47).

A ball in (X ,ρ) with center x ∈ X and radius r will be denoted by Bρ(x,r).

3. ARCS IN C(X) APPROXIMATING DISTANCE IN (ρ∗)H

In this section we shall give an algorithm which allows us to construct arcs with lengths
approximating (ρ∗)H(A,B) for any A, B in C(X). As a consequence we shall obtain that, if
(X ,ρ) is geometrically acceptable, then so is (C(X),ρH) and the inequality (ρH)

∗ ≤ (ρ∗)H
is satisfied.

Lemma 5. Let (X ,ρ) ∈ GA and let A and B be finite subsets of X. Then, for any ε > 0, there
exists an arc L in the space (C(X),(ρ∗)H), with ends A and B such that

|L|(ρ∗)H ≤ (ρ∗)H(A,B)+ ε.
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Proof. Let A = {a1,a2, . . . ,an} for some n ∈ N, and B = {b1,b2, . . . ,bk} for some k ∈ N.
Take ε > 0. For each ai in A ( i ∈ {1,2, . . . ,n}) let a′

i be a point in B with the shortest
ρ∗ distance to ai. By the definition of ρ∗, there is an arc Li with ends ai and a′

i such that
|Li|ρ ≤ ρ∗(ai,a′

i)+ ε. Let |Li|ρ = αi.

We repeat the same construction for points in B. For each b j ∈ B ( j ∈ {1,2, . . . ,k}) let b′
j be

a point in A with the shortest ρ∗ distance to b j and let Kj be an arc with ends b j, b′
j such that

|Kj|ρ ≤ ρ∗(b j,b′
j)+ ε. Let |Kj|ρ = β j. Let λ = maxi, j{αi,β j}.

By the definition of the Hausdorff metric

(ρ∗)H(A,B) = max
i, j

{ρ∗(ai,a′
i),ρ

∗(b j,b′
j)}.

Therefore,
λ ≤ (ρ∗)H(A,B)+ ε. (2)

Let pi : [0,αi]−→ Li be the natural parametrization of Li for i ∈ {1,2, . . . ,n} with pi(0) = ai
and pi(αi) = a′

i. Obviously,

ρ∗(pi(t), pi(t ′)) ≤ |t − t ′| for t, t ′ ∈ [0,αi].

Let p̄i : [0,λ ] −→ Li be defined by

p̄i(t) = pi(
λi

λ
t) for t ∈ [0,λ ].

Let us note that

ρ∗(p̄i(t), p̄i(t ′)) ≤ λi

λ
|t − t ′| ≤ |t − t ′| for t, t ′ ∈ [0,λ ]. (3)

In the same manner, we take the natural parametrization

r j : [0,β j] −→ Kj, with r j(0) = b j and r j(β j) = b′
j and define a reparametrization

r̄ j(t) = r j(
β j

λ
(λ − t)) for t ∈ [0,λ ].

Thus, r̄ j(0) = b′
j, r̄ j(λ ) = b j and

ρ∗(r̄i(t), r̄i(t ′)) ≤ |t − t ′| for t, t ′ ∈ [0,λ ]. (4)

Let p : [0,λ ] −→ C(X) be defined by

p(t) =
⋃
i, j

{p̄i(t), r̄ j(t)} for t ∈ [0,λ ].

Denote p(t) by At . By Theorem 2, p is a continuous embedding of [0,λ ] into (C(X),(ρ∗)H)
with p(0) = A, p(λ ) = B. Thus, p([0,λ ]) is arc-wise connected and there is an arc L in
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p([0,λ ]), with ends A and B. By the definition of the Hausdorff metric, in view of (3) and
(4) we get,

(ρ∗)H(At ,A′
t) ≤ max

i, j
{ρ∗(p̄i(t), p̄i(t ′)),ρ∗(r̄i(t), r̄i(t ′))} ≤ |t − t ′|

for t, t ′ ∈ [0,λ ].

Therefore,
|L|(ρ∗)H ≤ |p([0,λ ]|(ρ∗)H ≤ λ .

By (2), we get the claim.

Lemma 6. Let (X ,ρ) ∈ GA and A ∈ C(X). Then, for any ε > 0 there exists a finite set A1 in
X and an arc L in (C(X),(ρ∗)H) joining A with A1, such that |L|(ρ∗)H ≤ ε .

Proof. For ε > 0 and i ∈ N, let δi =
ε

3·2i . Since compact sets are limits (in the Hausdorff
metric) of finite sets, there exists a finite subset Ai of A, Ai ∈ B(ρ∗)H (A,δi), for any i ∈ N. By
Lemma 5, there is an arc Li in (C(X),(ρ∗)H) with ends Ai and Ai+1 such that

|Li|(ρ∗)H ≤ (ρ∗)H(Ai,Ai+1)+δi.

The sequence (Ai) is convergent to A in (ρ∗)H metric, thus there is an arc L in
⋃∞

i=1 Li joining
A1 and A such that

|L|(ρ∗)H ≤
∞

∑
i=1

|Li|(ρ∗)H ≤
∞

∑
i=1

(ρ∗)H(Ai,Ai+1)+δi

(compare [9]). Since

(ρ∗)H(Ai,Ai+1) ≤ (ρ∗)H(Ai,A)+(ρ∗)H(A,Ai+1) ≤ 2δi,

we obtain immediately

|L|(ρ∗)H ≤ 3
∞

∑
i=1

δi = ε.

Theorem 7. Let (X ,ρ) ∈ GA and A,B ∈ C(X). Then, for any ε > 0 there exists an arc L in
(C(X),(ρ∗)H) joining A and B, with |L|(ρ∗)H ≤ (ρ∗)H(A,B)+ ε .

Proof. For ε > 0, let ε ′ = ε
5 . By Lemma 6, there are finite sets A1 and B1 and arcs L1 and L2

joining A with A1 and B with B1, respectively, such that |Li|(ρ∗)H
≤ ε ′ for i = 1,2. By Lemma

5, there is an arc L3 with ends A1, B1, such that |L3|(ρ∗)H
≤ (ρ∗)H(A1,B1)+ ε ′. Thus there

is an arc L in L1 ∪L2 ∪L3 joining A and B with |L|(ρ∗)H ≤ |L1|(ρ∗)H
+ |L2|(ρ∗)H

+ |L3|(ρ∗)H
≤

(ρ∗)H(A1,B1)+3ε ′ ≤ (ρ∗)H(A,B)+5ε ′ = (ρ∗)H(A,B)+ ε.

Let us note that for any A,B ∈ C(X) we can use Proposition 5 to construct arcs whose
lengths approximate (ρ∗)H(A,B). It is enough to take sufficiently dense finite subsets of A
and B and follow the algorithm (see Example 5.1 Part 4).
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Corollary 8. Let (X ,ρ) ∈ GA. Then (C(X),ρH) ∈ GA and (ρH)
∗ ≤ (ρ∗)H.

Proof. Let (X ,ρ) ∈ GA. By Theorem 7 the space (C(X),(ρ∗)H) is strongly arc-wise con-
nected. From ρ ≤ ρ∗ , by Remark 3, we immediately get ρH ≤ (ρ∗)H . Hence, for any arc L
in (C(X),(ρ∗)H), L is an arc in (C(X),ρH) and |L|ρH ≤ |L|(ρ∗)H . Therefore, (C(X),(ρ∗)H) is
strongly arc-wise connected and (ρH)

∗ ≤ (ρ∗)H . Let us note that

ρH
top≈ (ρ∗)H ≥ (ρH)

∗ ≥ ρH .

Hence (C(X),ρH) ∈ GA.

4. METRICS (ρH)
∗ VERSUS (ρ∗)H

In this section we prove that (ρH)
∗ = (ρ∗)H .

Proposition 9. Let p : [0,λ ] −→ C(X) be a parametrization of an arc. Then
⋃

t∈[0,λ ]
p(t) is

compact in (X ,ρ).

Proof. Theorem 2 makes proving easy and standard.

Theorem 10. Let (X ,ρ) ∈ GA. Let A,B ∈ C(X) and let L be a rectifiable arc in (C(X),ρH),
with ends A and B. Then, for every a ∈ A there is b ∈ B and an arc L in X, with ends a and
b, such that

L ⊂
⋃

L ⊂ X and |L|ρ ≤ |L|ρH .

Proof. Let L be a rectifiable arc in (C(X),ρH) with |L|ρH = λ . Let p : [0,λ ] −→ C(X) be
a natural parametrization of L, p(0) = A, p(λ ) = B and p(t) = At for t ∈ [0,λ ]. Take a ∈ A.
Let ti,k = λ ·k

2i for k = 0,1, . . .2i and i ∈ N. For any i, we choose sets A0, . . .A λ ·k
2i
, . . . ,Aλ . Next,

for every i we define a set Pi = {xi,0, . . .xi,k, . . .xi,2i}. We start with xi,0 = a. If xi,k has been
defined, then we define xi,k+1 to be the nearest point to xi,k in A λ ·(k+1)

2i
with respect to ρ∗ metric

(if there are more than one nearest points, then we choose one at random). By Proposition
9,
⋃L is compact, thus, by Remark 4, a sequence (Pi) has a convergent subsequence in

(L,ρH). For simplicity, we assume that (Pi) is convergent. Now we define a sequence (γi)
of functions γi : {0, . . . , λ ·k

2i , . . . ,λ} −→ Pi as follows:

γi

(
λ · k
2i

)
= xi,k for k = 0,1, . . . ,2i.

Let γ(t) = limi→∞ γi(t), for t = λ ·k
2i . Since (Pi) is convergent in the Hausdorff metric, by

Theorem 2, the sequence (γi(t)) is convergent in
⋃L. For any i and for tk = λ ·k

2i we have

ρ(γi(tk),γi(tk+1)) ≤ ρH(Atk ,Atk+1) ≤ |tk − tk+1|.
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Therefore,
ρ(γi(tk+ j),γi(tk)) ≤ |tk+ j − tk|.

Thus, γ is a Lipschitz function on a dense subset of interval [0,λ ] and can be extended to the
whole interval. Moreover, |γ([0,λ ])|ρ ≤ λ . Hence, there is an arc L in γ([0,λ ]), with ends
γ(0) and γ(λ ), such that |L|ρ ≤ λ .

By Corollary 8 and Theorem 10 we obtain the main result.

Corollary 11. Let (X ,ρ) ∈ GA. Then (C(X),ρH) ∈ GA and (ρ∗)H = (ρH)
∗.

Corollary 12. Let (Xi,ρi) ∈ GA for i = 1,2 and let f : (X1,ρ1) −→ (X2,ρ2) be an intrinsic
isometry. Then the induced map f̄ : (C(X1),(ρ1)H) −→ (C(X2),(ρ2)H), defined by f̄ (A) =
f (A), for any compact subset A of X, is an intrinsic isometry.

Proof. Let f : (X1,ρ1) −→ (X2,ρ2) be an intrinsic isometry. Then, by the definition of in-
trinsic isometry,

f : (X1,(ρ1)
∗) −→ (X2,(ρ2)

∗)

is an isometry. Thus,

f̄ : (C(X1),((ρ1)
∗)H) −→ (C(X2),((ρ2)

∗)H)

is an isometry. By Corollary 11 we get the claim.

Corollary 13. (X ,ρ) ∈ GA. Then ρ = ρ∗ if and only if ρH = (ρH)
∗.

Proof. Let ρ = ρ∗. By Corollary 11, we obtain ρH = (ρ∗)H = (ρH)
∗.

Now, let ρH = (ρH)
∗. By Corollary 11, for any a,b ∈ X we obtain ρ(a,b) = ρH({a},{b})

= (ρH)
∗({a},{b}) = (ρ∗)H({a},{b}) = ρ∗(a,b).

5. EXAMPLES

We start with a construction of metric segments in C(X) with ρH metric.

Proposition 14. Let X be metrically convex, A,B ∈ C(X) and let ρH(A,B) = α . If (A)t and
(B)t are compact for every t ∈ [0,α], then M : [0,α] −→ C(X) defined by

M(t) = (A)t ∩ (B)α−t for t ∈ [0,α]

is an isometric embedding into C(X) with ρH metric.

Proof. The proof is an easy adaptation of proofs in [6] (Lemma 3.6, Lemma 3.7, and Propo-
sition 3.8).
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The next example illustrates the main result of the paper (see Corollary 11).

Example 15. Let X be the union of two equilateral triangles in R2 with vertices a1,a2,o

and b1,b2,o, where a1 =

(
−

√
3

2
,
1
2

)
, a2 =

(
−

√
3

2
,−1

2

)
, o = (0,0), b1 =−a2, b2 =−a1.

Let ρ be the Euclidean metric in R2 restricted to X. Metrics ρ∗ and ρ are topologically
equivalent, so compact sets in both metrics coincide i.e. Cρ(X) = Cρ∗(X). Let A and B be
segments with ends a1, a2 and b1, b2, respectively. It is evident that ρH(A,B) =

√
3.

Part 1. (see Figure 1).

Let us consider the space (C(X),(ρ∗)H). It is obvious that A,B ∈ C(X) and

(ρ∗)H(A,B) = 1+

√
3

2
.

Part 2. (see Figure 2).

We shall construct an arc in (C(X),ρH) joining A and B. Let

At =

{
(x1,x2) ∈ X : x1 =

√
3

2
t −

√
3

2

}
and

Bt = {(−x1,x2) : (x1,x2) ∈ At},
for every t ∈ [0,1]. Functions p : [0,1]−→C(X) and p′ : [0,1]−→C(X) defined by p(t) = At
and p′(t) = Bt are isometric embeddings (with respect to ρH), since

ρH(At ,At ′) = |t − t ′| = ρH(Bt ,Bt ′)

for every t ∈ [0,1]. Moreover, p(0) = A, p(1) = (0,0) = p′(0) and p′(1) = B. Thus,
p([0,1])∪ p′([0,1]) is an arc with length equal to 2 in (C(X),ρH), joining A and B ( this
implies (ρH)

∗(A,B) ≤ 2). However, as we can see below, it is not an arc with the shortest
length.

Part 3. (see Figure 3).

We shall construct an arc in (C(X),ρH) with the ends A and B and with the length 1+

√
3

2
.

Let us note that the space (X ,ρ∗) is metrically convex, (ρ∗)H(A,B) = α = 1 +

√
3

2
and

convex hulls (A)t and (B)t (with respect to ρ∗ metric) are compact for every t ∈ [0,α]. Thus,
by Proposition 14, the function M : [0,α] −→ (C(X),(ρ∗)H) defined by

M(t) = (A)t ∩ (B)α−t for t ∈ [0,α]

is an isometric embedding. Therefore, M : [0,α]−→ (C(X),ρH) is a homeomorphic embed-
ding and, by Remark 3, we get

|M([0,α])|ρH ≤ α.

Thus, by Corollary 11,
|M([0,α])|ρH = α.
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Fig. 1. (ρ∗)H(A,B) = 1+

√
3

2

Fig. 2. Construction of an arc in (C(X),ρH) joining A and B, with length equal to 2
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Fig. 3. Construction of an arc in (C(X),ρH) joining A and B, with the shortest length

Fig. 4. Construction of an arc in C(X) which approximates (ρ∗)H(A,B)

Part 4.

Figure 4 presents a method of constructing arcs whose lengths approximate (ρ∗)H(A,B) for
sets A and B from Example 15. Here A1 and B1 from Lemma 5 are 10 - element subsets of A
and B respectively.

Let us note that in general there are no good methods to find an arc with the shortest length
in (C(X),ρH) (even if it exists). Moreover, to calculate lengths of arcs in this space may be
a difficult task. The equality

(ρH)
∗ = (ρ∗)H ,

(see Corollary 11) allows us to calculate (ρH)
∗ without constructing arcs in (C(X),ρH).

Much simpler calculations of lengths of arcs in the space (X ,ρ) are sufficient to find (ρH)
∗

distance of two elements of C(X).
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1. INTRODUCTION

The problem of pricing and hedging non-attainable claims in incomplete markets is one
of the fundamental problems in mathematical finance. It has been considered by many re-
searchers, under various hedging criteria. One of the quite popular hedging criteria is risk-
minimization introduced by Föllmer and Sondermann [7]. Their idea was to omit the self-
financing condition and look for strategies that hedge a single claim H at time T perfectly
and at the same time minimize the conditional variance of the remaining cost at each time t.
They proved in [7] that there exists a unique risk minimizing hedging strategy for an arbitrary
square integrable payoff at fixed maturity T <∞ provided that the process of discounted price
of the risky asset is a square integrable martingale. After [7], many papers have appeared
dealing with the problem of finding an explicit formula for the risk minimizing strategy.
Bouleau and Lamberton [1] have used the carré-du-champ operator to find a risk minimiz-
ing strategy for European options that are functions of the asset price at time T when the
asset price is a function of a Markov process. Subsequently, Elliott and Föllmer [6] solved
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a similar problem in the one-dimensional Markovian case as well as in the general case by
using orthogonal martingale representation, i.e. the Galtchouk-Kunita-Watanabe decompo-
sition (GKW for short). Møller [13] generalized the results of Föllmer and Sondermann to
the case in which the liabilities of the hedger are described by an arbitrary square integrable
and càdlàg payment process. It is also worth mentioning the papers by Dahl and Møller [5]
and Dahl, Melchior and Møller [4] where explicit formulae for risk minimization of life in-
surance contracts that are subject to systematic mortality risk are derived. Norberg [15] (see
also Norberg [14]) has proved, in a multidimensional setting and under the assumption that
some predictable covariations are absolutely continuous, that finding the main component of
a risk minimizing strategy can be reduced to solving a system of linear equations. Norberg
[15] derives the equations for this component without referring to GKW decomposition as
in [13]. In a recent paper Ceci, Cretarolla and Russo [2] found risk minimizing strategies
under restricted information by solving backward stochastic differential equations driven by
martingales. In [9] we derive the pricing and hedging formulae for financial contracts with
a payment stream process D having some structure which also depends on the credit rat-
ing process. The formulae are given in terms of a solution of a certain Cauchy problem
of integro-differential type. We note that these formulae in order to be applied in practice
require first solving system of coupled integro-differential equations which is usually done
numerically and then integrating numerically the solution with respect the Lévy measure.
A realisation of this program can be very complicated. Therefore in this paper we proposed
to use Fourier methods for solving problems of pricing and hedging in Lévy exponential
model with ratings. We obtain formulae in which we first solve numerically linear matrix
ODE and then integrate it numerically, so these formulae are much simpler to be applied in
practice than these obtained in [9]. Our result is closely related to Tankov [18] who showed
explicit formula for minimal variance portfolios in the case of European pay-offs and ex-
ponential Lévy models by using Fourier analysis techniques developed earlier by Hubalek,
Kallsen, and Krawczyk [8]. Such a portfolio is closely related to a risk minimizing strategy
(see discussion on page 547 in [17]) since it is solved by means of GKW decomposition.
Tankov’s formula is in terms of integrals of the Fourier transforms of the payoff and the
characteristic function of the corresponding Lévy process. In this paper we generalize the
technique introduced by Tankov [18] and apply them to pricing problem on a market with
one risky asset which is subject to credit risk. The credit risk in our setup is modelled by
a credit rating process which is assumed to be a finite state Markov chain whose evolution
influences on the dynamic of a risky assets. We obtain formulae which are expressed by
means of integral of Fourier transform of functions which appear in the payment process and
a discounted conditional characteristic function of log prices. The paper is organised in the
following way. In Section 2 we present, following [9], a model of market and methods of
pricing and hedging using partial integro-differential equations (PIDE’s). Since these results
are not easy to implement in practice we develop theory giving results in terms of Fourier
transforms, which are easy to implement numerically. It is done in Section 3. In Theorem
3 we give a price of a single payoff, in Theorem 5 an ex-dividend price of payments stream
process D and in Theorem 7 the risk minimization strategy for D.
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2. DESCRIPTION OF A MODEL

2.1. DESCRIPTION OF A (JUMP-DIFFUSION) MARKET MODEL

We consider a market on which there exists a bank account and we trade risky assets.
We assume that the trading holds on interval [0,T ∗] with T ∗ < ∞. Our model of market
takes into account ratings and jumps of price processes. These are modelled by a multidi-
mensional process (S,C) on some filtered probability space (Ω,F ,F,P). The process S is
a process of price of tradable risky asset and the process C takes values in a finite state space
K= {1, . . . ,K}. It could be interpreted as a credit rating of company, so Cu represents a credit
rating at time u ≤ T ∗ of a company whose stock price is given by S. We suppose that the
investor can invest in a money account with the price process, denoted by B, depending on
economic conditions of market which are described by the rating system C. The process B
is given by a unique solution to

dBu = r(Cu−)Budu, B0 = 1, u ∈ [0,T ∗], (1)

where r is a measurable and deterministic bounded function. Let β denote the discount factor
process, i.e.,

βt = B−1
t . t ∈ [0,T ].

We also assume that the evolution of prices depends on credit rating or economic conditions
of market which are described by C. So, we assume that our model is described by SDE in
which the credit rating of company have impact on asset prices S by influence on drift and
volatility. Moreover, a change in credit rating from j to k at time u causes a jump in prices
of size (eΨ j,k − 1) in percentages. Taking into account these considerations we assume that
the evolution of (S,C) is given as a unique weak solution of the following SDE

dSt = St−

(
r(Ct−)dt + 〈Σ(Ct−),dWt〉+

∫
Rn
(e〈Σ(Ct−),x〉 −1)π̃(dx,dt) (2)

+ ∑
j,k∈K:k = j

(eΨ j,k −1)�{ j}(Ct−)dM̃ j,k
t

)
,

dCt = ∑
j,k∈K:k = j

(k− j)�{ j}(Ct−)dN j,k
t ,

where 〈·, ·〉 denotes the scalar product in Rn, Σ : K → Rn, Ψ j,k ∈ R, W is a standard
n-dimensional Wiener process, N j,k are independent Poisson processes with constant inten-
sities λ j,k > 0 and π(dx,dt) is a Poisson random measure on R

n × [0,T ∗] with the intensity
measure ρ(dx)dt satisfying, for some m ≥ 1,∫

|x|>1
e2m〈Σ(i),x〉ρ(dx)< ∞ ∀i ∈ K. (3)
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Moreover, π̃(dx,dt) is the compensated Poisson random measure, i.e.,

π̃(dx,dt) = π(dx,dt)−ρ(dx)dt,

and M̃ j,k are compensated Poissson processes N j,k given by

M̃ j,k
t = N j,k

t −λ j,kt, t ∈ [0,T ∗].

Information available to the market participants is from an observation of process (S,C).

Our model generalize a regime switching model with jumps, extensively studied amongs
others by Chourdakis [3], Mijatovic and Pistorius [12] or Kim et al. [11] for which Ψ j,k = 0
in (2), so the part of dynamics driven by M j,k disappears. Note that the coefficients of SDE
(2) satisfy standard assumptions (linear growth and Lipschitz conditions) for existence of
a unique strong solution. We denote

H j
u = �{Cu= j}, H j,k

u =
∫ u

0
H j

v−dHk
v , u ∈ [0,T ∗]

for j,k ∈ K, k = j. The process (H j,k
u )u∈[0,T ∗] counts the number of jumps of C from j to k

up to time u and we have (see e.g. [9]).

H j,k
u =

∫ u

0
H j

v−dN j,k
v .

This and the martingale property of M̃ j,k imply that the process defined by

M j,k
u := H j,k

u −
∫ u

0
H j

v−λ j,kdv, u ∈ [0,T ∗], (4)

is an (F,P)-martingale. Thus in view of martingale characterization theorem (see e.g. Rogers
and Williams [16]) the coordinate C of solution (S,C) is a Markov chain with the state space
K and λ j,k can be interpreted as transition intensity of C. The drift term in (2) implies that
the discounted prices of tradable assets S are local martingales under the probability P. So,
P is a martingale measure, and hence there is no arbitrage on the market.

2.2. PRICING AND HEDGING VIA PIDE’S

We consider a contract between two parties, a seller (also called hedger) and a buyer,
which specifies precisely the cash-flows between these two parties. These cash-flows are
described by a càdlàg process D, i.e. Dt represents accumulated payments (outflows as well
as injections of cash from the buyer) up to time t. The process D is called a payments stream
process or a dividend process. Fix T , T ≤ T ∗. We consider here the dividend processes of
the form

Dt = h(ST ,CT )�t≥T +
∫ t

0
g(Su,Cu)du+ ∑

j,k∈K:k = j

∫ t

0
Z j,k(Su−)dH j,k

u , (5)
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0 ≤ t ≤ T ∗, where h, g, Z j,k are continuous in s real-valued functions such that

E

∣∣∣∫ T

t
β−1

t βudDu

∣∣∣2 < ∞ for all t ∈ [0,T ]. (6)

This payments stream process describes the following payments:

(i) The promised payment h(ST ,CT ) which is paid at time T .

(ii) The promised coupons which are paid instantaneously at intensity g(Su,Cu) in [0,T ].

(iii) The payments Z j,k(Su−), which are paid at u provided that there is a change in the
rating C from j to k at the moment u.

There are two fundamental problems that need to be studied for the financial contract
introduced above, that is the pricing of the contract described by D and the hedging of this
contract. We solve these problems on the market with processes of prices described by
equations (1) and (2). As we know from [10], the problem of pricing of D boils down to
computations of the ex-dividend price process, i.e.

Vt :=β−1
t E

(
βTh(ST ,CT )+

∫ T

t
βug(Su,Cu)du+ ∑

j,k∈K:k = j

∫ T

t
βuZ j,k(Su−)dH j,k

u

∣∣∣Ft

)
. (7)

One can price and hedge such claims via associated Cauchy problems as it has been described
in our paper [9]. Indeed, it is clear from the exponential form of component S of solution of
(2), that D= R+×K is an invariant set for (2). So, assuming that h,g,Z j,k ∈ Cm(D), where

Cm(D) = {u : D→ R : u(·, j) is continuous and |u(y, j)| ≤ K(1+ |y|m) ∀ j ∈ K} ,

and the function v is a sufficiently smooth solution of the following Cauchy problem

∂tv(t,s, j)+∇v(t,s, j)r( j)s+
1
2

s|Σ( j)|2∇2v(t,s, j)

+
∫
Rn

(
v(t,se〈Σ( j),x〉, j)− v(t,s, j)−∇v(t,s, j)(e〈Σ( j),x〉 −1)

)
ρ(dx)

+ ∑
k∈K\ j

(
v(t,seΨ j,k

,k)− v(t,s, j)−∇v(t,s, j)(eΨ j,k −1)+Z j,k(t,s)
)

λ j,k

+g(t,s, j) = 0, (t,s, j) ∈ [0,T )×D,

v(T ,s, j) = h(s, j), (s, j) ∈ D,

(8)

it is clear by Theorem 3.1 in [9] that the ex-dividend price process is given by

Vt = v(t,St ,Ct).

The hedging problem is more complicated than the problem of pricing. First of all, the per-
fect hedging in the most cases is not possible, since the market introduced in Section 2.1
is usually incomplete. Thus, we need to specify the meaning of hedging that we wish to
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execute. There are many concepts of hedging in the incomplete markets: the min-variance
hedging, the indifference pricing or the (local) risk minimization amongst others. In this
paper we will focus on the risk minimization approach introduced by Föllmer and Sonder-
mann [7].

The idea of the risk minimization is to find a strategy which minimize the risk measured
as a conditional variance of the remaining cost viewed from every time t ≤ T . We denote
by (ϕ,η) a strategy that describes the number of assets held in the portfolio at time t, i.e.
ϕ is the number of risky assets and η describes the financial position on the bank account.
By Theorem 3.2 from [9] it follows that we can find a 0-achieving risk-minimizing strategy
for D by means of solving the related Cauchy problem (8) and then some system of linear
equations.

Using Theorem 3.2 from [9] we see that the component ϕ has on the set {Ct− = j} the
representation

ϕt = (Ĝ j
t )

−1

(
|Σ( j)|2∇v(t,St−, j)+

∫
Rn
(e〈Σ( j),x〉 −1)

v(t,St−e〈Σ( j),x〉, j)− v(t,St−, j)
St−

ρ(dx)

+ ∑
k∈K:k = j

(eΨ j,k −1)
(v(t,St−eΨ j,k

,k)− v(t,St−, j)+Z j,k(t,St−))
St−

λ j,k

)
,

where

Ĝ j
t :=

(
|Σ( j)|2 +

∫
Rn
(e〈Σ( j),x〉 −1)2ρ(dx)+

(
∑

k∈K:k = j
(eΨ j,k −1)2λ j,k

))
.

and the component η of optimal strategy is given by

ηt = βt
(
v(t,St ,Ct)1{t<T} −ϕtSt

)
.

We can use Theorem 3.2 from [9] since condition (3) implies conditions (2.8) and (2.11)
in [9].

3. PRICING AND HEDGING VIA FOURIER METHODS

In the previous section we described how problems of pricing and hedging can be solved
using solutions of Cauchy problems. Now we will show, under some assumptions on func-
tions h,g,Z j,k, that we can find risk minimization strategy for D given by (5) via Fourier
transform methods.

As in the previous section we assume that h,g,Z j,k ∈ Cm(D). We start with the following
lemma which is of fundamental importance in this paper. The lemma gives the dynamic of
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the log-prices of risky asset as well as the formula for discounted conditional characteristic
function of the the log-price process in terms of matrix valued linear ODE which can be
solved numerically. This will enable us, subsequently, to use Fourier transform methods to
compute conditional expectation in terms of the related ODEs and the Fourier transforms of
some functions.

Lemma 1. Suppose that (S,C) is a unique solution of the system of SDEs (2). Then Yt := lnSt
has the following dynamics

Yt := Y0 +
∫ t

0

(
r(Cs−)−J1(−iΣ(Cs−))−J2(Cs−)

)
ds+

∫ t

0
〈Σ(Cs−),dLs〉

+ ∑
j,k∈K, j =k

Ψ j,kdH j,k
s ,

(9)

where L is an R
K-valued Levy process with the characteristic triple (0, Id,ρ),

J1(u) = −〈u,u〉
2

+
∫
Rn

(
ei〈u,x〉 −1− i〈u,x〉�{|x|≤1}

)
ρ(dx),

J2( j) = ∑
k∈K,k = j

(
eΨ j,k −1

)
λ j,k.

(10)

Moreover, for any u ∈ R

E

(
β−1

t βT eiuYT�{CT=k}|Ft

)
= eiuYt φCt ,k(t;T,u), (11)

where φ(t;T,u) = [φ j,k(t;T,u)] j,k∈K is a solution to the system of matrix valued ODEs

dφ(t;T,u)‘ = −(Λ+Θ(u))φ(t;T,u)dt, φ(T ;T,u) = I (12)

with a matrix function Θ defined by

Θ j,k(u) =

{
−r( j)+J1(uΣ( j))+ iu(r( j)−J1(−iΣ( j))−J2( j)), j = k,
λ j,k(eiuΨ j,k −1), j = k.

Proof. The first part follows from Itô’s lemma. For the second part we use a Feynman-Kac
argument. First we show that

v(t,y, j) = eiuyφ j,k(t;T,u) (13)

is a classical solution of a Cauchy problem

(∂t +A)v(t,y, j) = r( j)v(t,y, j), v(T,y, j) = eiuy
�{ j=k}. (14)

Indeed, under hypothesis (13) we have

∂yv(t,y, j) = iueiuyφ j,k(t;T,u), ∂ 2
yyv(t,y, j) = −u2eiuyφ j,k(t;T,u),
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v(t,y+ 〈Σ( j),x〉, j)− v(t,y, j)−∂yv(t,y, j)〈Σ( j),x〉�{|x|≤1}

= eiuyφ j,k(t;T,u)
(

eiu〈Σ( j),x〉 −1− iu〈Σ( j),x〉�|x|≤1

)
,

v(t,y+Ψ j,m,m)− v(t,y, j) = eiuy(φm,k(t;T,u)eiuΨ j,m −φ j,k(t;T,u)).

Hence, substituting these expressions in (14) and using (12) yield

(∂t +A)v(t,y, j) = eiuy
(

∂tφ j,k(t;T,u)+ iu(r( j)−J1(−iΣ( j))−J2( j))φ j,k(t;T,u)

− 〈Σ( j),Σ( j)〉u2

2
φ j,k(t;T,u)+φ j,k(t;T,u)

∫
Rn

(
eiu〈Σ( j),x〉 −1− iu〈Σ( j),x〉�|x|≤1

)
ρ(dx)

+ ∑
m∈K,m = j

(φm,k(t;T,u)eiuΨ j,m −φ j,k(t;T,u))λ j,m
)
= r( j)eiuyφ j,k(t;T,u) = r( j)v(t,y, j),

which proves that v solves the Cauchy problem (14). Thus, using Itô’s lemma we obtain

Siu
t φCt ,k(t;T,u)βt = Siu

0 φC0,k(0;T,u)+ iu
∫ t

0
βsSiu

s−φCs−,k(s;T,u)〈Σ(Cs−),dWs〉

+
∫ t

0

∫
Rn

βsSiu
s−φCs−,k(s;T,u)(eiuΣ(Cs−)x −1)π̃(ds,dx)

+
∫ t

0
∑

j,m∈K:m= j
βsSiu

s−(φm,k(s;T,u)eiuΨ j,m −φ j,k(s;T,u))dM j,m
s .

(15)

This shows that (Siu
t φCt ,k(t;T,u)βt)t∈[0,T ] is a local martingale. Now, we note that it is uni-

formly integrable and hence it is a martingale.

Remark 2. Equality (11) is also valid for u ∈ C satisfying an additional assumption. Let
u = a+ ib ∈ C be such that

bΣ(i) ∈
{

v :
∫
|x|>1

(e2〈v,x〉+ e〈v,x〉)ρ(dx)< ∞
}

for every i ∈ K.

This assumption implies that

E

(
sup

t∈[0,T ]
|St |2b

)
< ∞,

and hence (Siu
t φCt ,k(t;T,u)βt)t∈[0,T ] is still uniformly integrable for such chosen complex

number u.

Let us introduce some convenient notation. For a given function g : R×K → R by ge we
denote the modified payoff function

ge(y,c) := g(ey,c),
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and for a real number R we denote by ge
R the dampened modified function ge, i.e.

ge
R(y,k) = ge(y,k)e−Ry = g(ey,k)e−Ry.

Moreover, by ĝ we denote the vector valued function ĝ(u) = (ĝ(u,1), . . . ĝ(u,K))!, where
ĝ(·,c) is the Fourier transform of g(·,c), i.e.

ĝ(u,c) :=
∫
R

eiuyg(y,c)dy.

Note that we (obviously) have

ĝe
R(u,c) = ĝe(u+ iR,c).

In the theorem below we show how the Fourier methods can be applied to solve the pricing
problem for single payoff h(ST ,CT ) at time T ≤ T ∗.

Theorem 3. Let h be a given payoff function h : R+ ×K → R. Suppose that there exists R
such that:

i) the dampened modified payoff function he
R has properties

y → he
R(y,k) is in L1(R)∩Cb(R), u → ĥe

R(u,k) is in L1(R),

ii)
EeRYT < ∞.

Then

β−1
t E(βT h(ST ,CT )|Ft) =

1
2π

∫
R

SR−iu
t 〈Ht ,φ(t;T,−u− iR)ĥe(u+ iR)〉du, (16)

where φ is the unique solution of ODE (12) and

Ht := (�{1}(Ct), . . . ,�{K}(Ct))
!.

Proof. Recall that St = eYt . We have

β−1
t E(βT h(ST ,CT )|Ft)CT )|Ft) = E(β−1

t βT eRYT he
R(YT ,CT )|Ft)

= E

(
β−1

t βT eRYT
1

2π

∫
R

e−iuYT ĥe
R(u,CT )du|Ft

)
.

By assumption ii),

E

(∫
R

∣∣∣β−1
t βT eRYT e−iuYT ĥe

R(u,CT )
∣∣∣du
)

≤ KE

(
β−1

t βT eRYT
)
< ∞,
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so we can apply the Fubini theorem and Lemma 1 in penultimate equality, which yield

β−1
t E(βT h(ST ,CT )|Ft)

=
1

2π

∫
R

E

(
β−1

t βT eRYT e−iuYT ĥe
R(u,CT )|Ft

)
du

=
1

2π

∫
R

E

(
β−1

t βT eRYT e−iuYT ĥe(u+ iR,CT )|Ft

)
du

= ∑
k∈K

1
2π

∫
R

E

(
β−1

t βT eRYT e−iuYT�{CT=k}|Ft

)
ĥe(u+ iR,k)du

= ∑
k∈K

1
2π

∫
R

E

(
β−1

t βT ei(−u−iR)YT�{CT=k}|Ft

)
ĥe(u+ iR,k)du

= ∑
k∈K

1
2π

∫
R

e−iYt(u+iR)φCt ,k(t;T,−u− iR,k)ĥe(u+ iR,k)du

= ∑
k∈K

1
2π

∫
R

eYt(R−iu)φCt ,k(t;T,−u− iR,k)ĥe(u+ iR,k)du.

The proof is complete.

In most cases formula (16) is applied for t = 0, in such case (16) takes the form

E(βT h(ST ,CT )) =
1

2π

∫
R

SR−iu
0 〈H0,φ(0;T,−u− iR)ĥe(u+ iR)〉du

=
1

2π

∫
R

e−iy(u+iR)〈H0,φ(0;T,−(u+ iR))ĥe
R(u)〉du,

where y := lnS0. Note that the above integral involves ĥe
R which is the Fourier transform

of modified dampened payoff function and φ(0;T, ·) which is the discounted characteristic
function of log-prices at time T (extended to complex domain cf. Remark 2). This integral
can be efficiently approximated via Fast Fourier Transform methods provided that ĥe

R is
known explicitly.

The following proposition follows from Theorem 3 and shows how the pricing problem
can be solved by using a Fourier integral and a linear vector valued ODE:

Proposition 4. Let h and f be measurable functions R+×K �→ R. Suppose that there exist
a constant R such that:

i) The functions

y → he
R(y,k) and y → f e

R(y,k) are in L1(R)∩Cb(R),

u → ĥe
R(u,k) and u → f̂ e

R(u,k) are in L1(R).

ii)
E sup

v∈[0,T ]
eRYv < ∞.
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Then

β−1
t E

(
βT h(ST ,CT )+

∫ T

t
βv f (Sv,Cv)dv|Ft

)
=

1
2π

∫
R

SR−iu
t 〈Ht ,Φ(t;T,u+ iR)〉du, (17)

where Φ = (Φ1, . . . ,ΦK)
! is a solution of the vector valued ODE

∂tΦ(t,u)+(Λ+Θ(−u))Φ(t,u) = − f̂ e(u), Φ(T,u) = ĥe(u). (18)

Proof. Note that the solution Φ of (18) can be written as

Φ(t,u) = φ(t;T,−u)ĥe(u)+
∫ T

t
φ(t;v,−u) f̂ e(u)dv, (19)

where φ is a solution of ODE (12). Hence (17) is equivalent to

β−1
t E

(
βT h(ST ,CT )+

∫ T

t
βv f (Sv,Cv)dv|Ft

)
=

1
2π

∫
R

SR−iu
t

〈
Ht ,φ(t;T,−u− iR)ĥe(u+ iR)+

∫ T

t
φ(t;v,−u− iR) f̂ e(u+ iR)dv

〉
du.

Thus, in view of Theorem 3, it suffices to show that

β−1
t E

(∫ T

t
βv f (Sv,Cv)dv|Ft

)
=

1
2π

∫
R

SR−iu
t

〈
Ht ,
∫ T

t
φ(t;v,−u− iR) f̂ e(u+ iR)dv

〉
du.

Towards this end, note that by the Fubini theorem and Theorem 3 we have

β−1
t E

(∫ T

t
βv f (Sv,Cv)dv|Ft

)
=
∫ T

t
E

(
β−1

t βv f (Sv,Cv)|Ft

)
dv

=
∫ T

t

( 1
2π

∫
R

SR−iu
t 〈Ht ,φ(t;v,−u− iR) f̂ e(u+ iR)〉du

)
dv

=
1

2π

∫
R

SR−iu
t

〈
Ht ,
∫ T

t
φ(t;v,−u− iR) f̂ e(u+ iR)dv

〉
du.

This ends the proof.

Now we can summarize the above results and obtain the ex-dividend price of D using
Propostion 4, (5) and (7).

Theorem 5. Suppose that the payoff function h : R+×K �→ R and

f (y, j) := g(y, j)+ ∑
k = j

Z j,k(y)λ j,k. (20)

satisfy assumptions i) and ii) of Proposition 4. Then the ex-dividend price of D is given by

Vt =
1

2π

∫
R

SR−iu
t 〈Ht ,Φ(t;T,u+ iR)〉du,

where Φ is the unique solution of the ODE (18) with the function f given by (20).
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In the following lemma we show the dynamic of the process under the integral in formula
(17). This result together with Proposition 4 will be used in the proof our second main result
of the paper giving hedging strategy.

Lemma 6. Suppose that the assumptions of Proposition 4 are in force. Let Φ be the unique
solution of ODE (18). Then

d(SR−iu
t ΦCt (t,T,u+ iR))

= SR−iu
t− ΦCt−(t,T,u+ iR))

[
(R− iu)〈Σ(Ct−),dWt〉+

∫
Rn

(
e(R−iu)〈Σ(Ct−),y〉 −1

)
π̃(ds,dy)

]
+ ∑

k, j: j =k
SR−iu

t−
(

Φk(t,T,u+ iR)e(R−iu)Ψ j,k −Φ j(t,T,u+ iR)
)

dM j,k
t

+SR−iu
t−

(
ΦCt−(t,T,u+ iR))r(Ct−)− f̂ e(u+ iR,Ct−)

)
dt.

(21)

Proof. Using integration by parts formula we have

d(SR−iu
t ΦCt (t,T,u+ iR)) = (dSR−iu

t )ΦCt−(t,T,u+ iR))

+SR−iu
t− dΦCt (t,T,u+ iR))+ΔSR−iu

t ΔΦCt (t,T,u+ iR).
(22)

Now we calculate the components of the right hand side of (22). Using Itô’s lemma note that

dSR−iu
t = (R− iu)SR−iu

t−
dSt

St−
+

1
2
(R− iu)(R−1− iu)SR−iu

t 〈Σ(Ct−),Σ(Ct−)〉dt

+SR−iu
t−

((
1+

ΔSt

St−

)R−iu
−1− (R− iu)

ΔSt

St−

)
.

Then substituting (2) we can write this in the form

dSR−iu
t = SR−iu

t−
(
(R− iu)〈Σ(Ct−),dWt〉+ ∑

k, j∈K: j =k

(
e(R−iu)Ψ j,k −1

)
�{ j}(Ct−)dM j,k

t

+
∫
Rn

(
e(R−iu)〈Σ(Ct−),y〉 −1

)
π̃(dt,dy)+(R− iu)r(Ct−)dt

)
+

1
2
((R− iu)2 − (R− iu))SR−iu

t 〈Σ(Ct−),Σ(Ct−)〉dt

+SR−iu
t− ∑

k, j∈K: j =k

(
e(R−iu)Ψ j,k −1

)
�{ j}(Ct−)λ j,kdt

− (R− iu)SR−iu
t− ∑

k, j∈K: j =k
(eΨ j,k −1)�{ j}(Ct−)λ j,kdt

+SR−iu
t−

∫
Rn

(
e(R−iu)〈Σ(Ct−),y〉 −1− (R− iu)〈Σ(Ct−),y〉�|y|≤1

)
ρ(dy)dt

− (R− iu)SR−iu
t−

∫
Rn

(
e〈Σ(Ct−),y〉 −1−〈Σ(Ct−),y〉�|y|≤1

)
ρ(dy)dt.
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This, in turn, can be written in terms of J1 and J2 (see (10)) as

dSR−iu
t = SR−iu

t−
[
(R− iu)〈Σ(Ct−),dWt〉+ ∑

k, j∈K: j =k

(
e(R−iu)Ψ j,k −1

)
�{ j}(Ct−)dM j,k

t

+
∫
Rn

(
e(R−iu)〈Σ(Ct−),y〉 −1

)
π̃(dt,dy)+J1(−(u+ iR))+ ∑

k =Ct−

ΘCt−,k(−(u+ iR))

+(R− iu)
(
r(Ct−)−J1(−iΣ(Ct−))−J2(Ct−)

)
dt
]
.

(23)

Now, let us calculate differential dΦCt−(t;T,u+ iR). Applying Itô’s lemma we obtain

dΦCt−(t;T,u+ iR) = ∑
k:k =Ct−

(Φk(t;T,u+ iR)−ΦCt−(t;T,u+ iR))λCt−,kdt

+∂tΦCt−(t;T,u+ iR)dt + ∑
k, j:k = j

(Φk(t;T,u+ iR)−Φ j(t;T,u+ iR))dM j,k
t .

From (18) we get

dΦCt−(t;T,u+ iR) = −
(
∑

j
ΘCt−, j(−u− iR)Φ j(t;T,u+ iR)+ f̂ e(u+ iR,Ct−)

)
dt

+ ∑
k, j: j =k

(Φk(t;T,u+ iR)−Φ j(t;T,u+ iR))dM j,k
t .

(24)

Using this and (23) yield

ΔSR−iu
t ΔΦCt (t,T,u− iR) = SR−iu

t−
(( St

St−

)R−iu
−1
)(

ΦCt (t,T,u− iR)−ΦCt−(t,T,u− iR)
)

= ∑
k =Ct−

SR−iu
t−

(
e(R−iu)ΨCt−,k −1

)(
Φk(t,T,u− iR)−ΦCt−(t,T,u− iR)

)
= SR−iu

t−
(

∑
k =Ct−

ΘCt−,k(−u− iR)Φk(t,T,u− iR)

−ΦCt−(t,T,u− iR) ∑
k =Ct−

ΘCt−,k(−u− iR)
)

dt

+ ∑
k, j: j =k

SR−iu
t−

(
e(R−iu)Ψ j,k −1

)(
Φk(t,T,u− iR)−Φ j(t,T,u− iR)

)
dM j,k

t .

Substituting the above, (23) and (24) into (22) we obtain

d(SR−iu
t ΦCt (t,T,u− iR)) =

= SR−iu
t− ΦCt−(t,T,u− iR))

(
(R− iu)〈Σ(Ct−),dWt〉+ ∑

k, j∈K: j =k

(
e(R−iu)Ψ j,k −1

)
dM j,k

t

+
∫
Rn

(
e(R−iu)〈Σ(Ct−),y〉 −1

)
π̃(dt,dy)

)
+SR−iu

t− ΦCt−(t,T,u− iR))
[
J1(−(u+ iR)Σ(Ct−))+ ∑

k =Ct−

ΘCt−,k(−(u+ iR))
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+(R− iu)
(
r(Ct−)−J1(−iΣ(Ct−))−J2(Ct−)

)]
dt

−SR−iu
t−

(
ΘCt−,Ct−(−u− iR)ΦCt−(t;T,u+ iR)+ f̂ e(u+ iR,Ct−)

)
dt

−SR−iu
t−

(
ΦCt−(t,T,u− iR) ∑

k =Ct−

ΘCt−,k(−u− iR)
)

dt

+ ∑
k, j∈K: j =k

SR−iu
t−

(
1+ e(R−iu)Ψ j,k −1

)(
Φk(t,T,u− iR)−Φ j(t,T,u− iR)

)
dM j,k

t .

This simplifies to

d(SR−iu
t ΦCt (t,T,u− iR))

= SR−iu
t− ΦCt−(t,T,u− iR))

(
(R− iu)〈Σ(Ct−),dWt〉+

∫
Rn

(
e(R−iu)〈Σ(Ct−),y〉 −1

)
π̃(dt,dy)

)
+ ∑

k, j∈K: j =k
SR−iu

t−
(

Φk(t,T,u− iR)e(R−iu)Ψ j,k −Φ j(t,T,u− iR)
)

dM j,k
t

+SR−iu
t− ΦCt−(t,T,u− iR))

[
J1(−(u+ iR)Σ(Ct−))+(R− iu)

(
r(Ct−)

−J1(−iΣ(Ct−))−J2(Ct−)
)]

dt

−SR−iu
t−

(
ΘCt−,Ct−(−u− iR)ΦCt−(t;T,u+ iR)+ f̂ e(u+ iR,Ct−)

)
dt.

From the equality

−ΘCt−,Ct−(−u− iR)

= r(Ct−)−J1((−u− iR)Σ(Ct−)− i(−u− iR)
(
r(Ct−)−J1(−iΣ(Ct−))−J2(Ct−)

)
,

we obtain the asserted formula (21). The proof is now complete.

As we know from [13, Theorem 2.1] the crucial role for finding the risk minimizing
strategy is played by the martingale M defined by

Mt := E
(
βT h(ST ,CT )+

∫ T

0
βv f (Sv,Cv)dv|Ft

)
,

where f is given by (20). We need to find the martingale representation of M and to do this
we use the stochastic Fubini theorem. So, we need to impose some integrability assumptions.
Below we give two sets of assumptions which allow to apply stochastic Fubini theorem:

(A1): Let Φ be the unique solution of ODE (18) and assume that there exists a function
θ : C → R+ such that θ(·+ iR) ∈ L1(R) and which, for every t ∈ [0,T ], satisfies

E

∫ t

0

[∫
R

|ΦCv−(v,T,u+ iR)|2
θ(u+ iR)

β 2
v

∣∣∣S(R−iu)
v−

∣∣∣2 (R− iu)2〈Σ(Cv−),Σ(Cv−)〉du
]
dv < ∞,

E

∫ t

0

[∫
R

∫
Rd

|ΦCv−(v,T,u+ iR)|2
θ(u+ iR)

β 2
v

∣∣∣S(R−iu)
v−

∣∣∣2 ∣∣e(R−iu)〈Σ(Cv−),y〉 −1
∣∣2ρ(dy)du

]
dv < ∞,
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∑
k, j: j =k

E

∫ t

0

∫
R

[∣∣Φk(v,T,u+ iR)e(R−iu)Ψ j,k−Φ j(v,T,u+ iR)
∣∣2

θ(u+ iR)
βv

∣∣∣S(R−iu)
v−

∣∣∣2 H j
v−λ j,k

]
dudv

< ∞.

The second set of assumptions uses the functions which appears in the explicit form of
solution (18) given by (19).

(A2): Let φ be the unique solution of ODE (12) and let us denote by φ j the j-th row
vector of the matrix φ . Set

γ j,k(v,s,u) = e−iuΨ j,k
φk(v,s,u)−φ j(v,s,u).

Suppose that there exist functions θ1 : C → R+ and θ2 : [0,T ]×C → R+ such that θ1(·+
iR) ∈ L1(R) and θ2(·, ·+ iR) ∈ L1([0,T ]×R) and for every t ∈ [0,T ] the following integra-
bility conditions hold

E

∫ t

0

[∫
R

|φ(v,T,u+ iR)ĥe(u+ iR)|2
θ1(u+ iR)

β 2
v

∣∣∣S(R−iu)
v−

∣∣∣2 (R− iu)2〈Σ(Cv−),Σ(Cv−)〉du
]
dv < ∞,

E

∫ t

0

[∫
R

∫
Rd

|φ(v,T,u+ iR)ĥe(u+ iR)|2
θ1(u+ iR)

β 2
v

∣∣∣S(R−iu)
v−

∣∣∣2 ∣∣e(R−iu)〈Σ(Cv−),y〉 −1
∣∣2ρ(dy)du

]
dv

< ∞,

∑
k, j∈K: j =k

E

∫ t

0

∫
R

[∣∣γ j,k(v,T,u+ iR)ĥe(u+ iR)
∣∣2

θ1(u+ iR)
βv
∣∣S(R−iu)

v−
∣∣2H j

v−λ j,k
]
dudv < ∞.

and

E

∫ t

0

[∫
R

∫ T

v

|φ(v,s,u+ iR) f̂ e(u+ iR)|2
θ2(s,u+ iR)

β 2
v

∣∣∣S(R−iu)
v−

∣∣∣2 (R− iu)2〈Σ(Cv−),Σ(Cv−)〉dsdu
]
dv

< ∞,

E

∫ t

0

[∫
R

∫
Rd

∫ T

v

|φ(v,s,u+ iR) f̂ e(u+ iR)|2
θ2(s,u+ iR)

β 2
v

∣∣∣S(R−iu)
v−

∣∣∣2 ∣∣e(R−iu)〈Σ(Cv−),y〉 −1
∣∣2ds

ρ(dy)du
]
dv < ∞,

∑
k, j∈K: j =k

E

∫ t

0

∫
R

∫ T

v

[∣∣γ j,k(v,s,u+ iR) f̂ e(u+ iR)
∣∣2

θ2(s,u+ iR)
βv
∣∣S(R−iu)

v−
∣∣2H j

v−λ j,k
]
dsdudv < ∞.

The next theorem is the main result of the paper and generalize results of Tankov [18]
obtained for exponential Lévy models. One can verify that in the case considered by Tankov
[18] the set (A1) of assumptions are satisfied.
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Theorem 7. Let Φ be the unique solution of the ODE (18) with the function a given by (20).
Suppose that (A1) or (A2) holds. Then the risk minimization strategy for D exists and is
determined by the following investment in risky asset

ϕs =
1

2π

∫
R

SR−1−iu
s−

〈Hs−,(G(−u− i(R+1))−G(−u− iR)−L)Φ(s,T,u+ iR)〉
〈Hs−,(G(−2i)−2G(−i))�〉 du

+
1

Ss−

〈Z!(Ss−)Hs−,G(−i)!Hs−〉
〈Hs−,(G(−2i)−2G(−i))�〉

where �= (1, . . . ,1)! ∈ RK, G(u), for u ∈ C, is a matrix given by

G j,k(u) =

{
J1(uΣ( j)) j = k,

λ j,k
(

eiuΨ j,k −1
)

j = k,

and
L = diag(G(−i)�).

Proof. Let M be the martingale defined by

Mt := E

(
βT h(ST ,CT )+

∫ T

0
βvg(Sv,Cv)dv+ ∑

j,k: j =k

∫ T

0
βvZ j,k(Sv−)dH j,k

v |Ft

)
,

By [13, Theorem 2.1] the position in risky asset in the risk minimization strategy is given by

ϕv =
d〈〈M,Sβ 〉〉v

d〈〈Sβ 〉〉v
,

where 〈〈·, ·〉〉 denotes angle bracket (predictable quadratic covariation). We note that using
(2) and the definition of G one can verify in a standard way that

d〈〈Sβ 〉〉v = (Sv−βv)
2〈Hv−,(G(−2i)−2G(−i))�〉dv.

Now we compute d〈〈M,Sβ 〉〉v. Towards this end we will find the martingale representation
of M. We start with rewriting the martingale M in the form

Mt = E

(
βT h(ST ,CT )+

∫ T

t
βvg(Sv,Cv)dv+ ∑

j,k∈K: j =k

∫ T

t
βvZ j,k(Sv−)dH j,k

v

∣∣∣Ft

)
+
∫ t

0
βvg(Sv,Cv)dv+ ∑

j,k∈K: j =k

∫ t

0
βvZ j,k(Sv−)dH j,k

v

= βt

(
β−1

t E

(
βT h(ST ,CT )+

∫ T

t
βv

(
g(Sv−,Cv−)+ ∑

k =Cv−

ZCv−,k(Sv−)λCv−,k
)

dv|Ft

))
+
∫ t

0
βv

(
g(Sv−,Cv−)+ ∑

k =Cv−

ZCv−,k(Sv−)λCv−,k
)

dv+ ∑
j,k∈K: j =k

∫ t

0
βvZ j,k(Sv−)dM j,k

v

=
1

2π

∫
R

[
βtSR−iu

t 〈Ht ,Φ(t;T,u+ iR)〉+
∫ t

0
βvSR−iu

v f̂ e(u+ iR,Cv−)dv
]
du

+ ∑
j,k∈K: j =k

∫ t

0
βvZ j,k(Sv−)dM j,k

v , (25)
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where in the third equality we have used (17) and the Fourier inversion formula. Now, using
(21) and integration by parts we arrive at a formula for the dynamic of the first term under
the integral in (25)

d(βvSR−iu
v ΦCv(v,T,u+ iR))

= βvSR−iu
v− ΦCv−(v,T,u+ iR))

[
(R− iu)〈Σ(Cv−),dWv〉+

∫
Rn

(
e(R−iu)〈Σ(Cv−),y〉 −1

)
π̃(dv,dy)

]
+ ∑

j,k∈K:k = j
βvSR−iu

v−
(

Φk(v,T,u+ iR)e(R−iu)Ψ j,k −Φ j(v,T,u+ iR)
)

dM j,k
v

−βvSR−iu
v− f̂ e(u+ iR,Cv−)dv.

Hence (25) takes the form

Mt = M0 +
1

2π

∫
R

∫ t

0
βvSR−iu

v− ΦCv−(v,T,u+ iR))(R− iu)〈Σ(Cv−),dWv〉du

+
1

2π

∫
R

∫ t

0
βvSR−iu

v− ΦCv−(v,T,u+ iR))
∫
Rn

(
e(R−iu)〈Σ(Cv−),y〉 −1

)
π̃(dv,dy)du

+
1

2π

∫
R

[∫ t

0
∑

j,k: j =k
βvSR−iu

v−
(

Φk(v,T,u+ iR)e(R−iu)Ψ j,k −Φ j(v,T,u+ iR)
)

dM j,k
v

]
du

+ ∑
j,k∈K: j =k

∫ t

0
βvZ j,k(Sv−)dM j,k

v .

(26)

Now, using stochastic Fubini theorems (which is allowed under our assumptions) we obtain
a martingale representation of M

Mt = M0 +
∫ t

0
〈 1
2π

∫
R

βvSR−iu
v− ΦCv−(v,T,u+ iR))(R− iu)Σ(Cv−)du,dWv〉

+
∫ t

0

∫
Rn

[ 1
2π

∫
R

βvSR−iu
v− ΦCv−(v,T,u+ iR))

(
e(R−iu)〈Σ(Cv−),y〉 −1

)
du
]
π̃(dv,dy)

+
∫ t

0
∑

j,k: j =k

[ 1
2π

∫
R

βvSR−iu
v−

(
Φk(v,T,u+ iR)e(R−iu)Ψ j,k −Φ j(v,T,u+ iR)

)
du
]
dM j,k

v

+ ∑
j,k∈K: j =k

∫ t

0
βvZ j,k(Sv−)dM j,k

v .

Thus, we have

d〈〈M,Sβ 〉〉v

dv
= (βvSv−)2 1

2π

(∫
R

SR−1−iu
v− ΦCv−(v,T,u+ iR))

[
(R− iu)〈Σ(Cv−),Σ(Cv−)〉

]
du

+
∫
R

SR−1−iu
v− ΦCv−(v,T,u+ iR))

[∫
Rn

(
e(R−iu)〈Σ(Cv−),y〉 −1

)(
e〈Σ(Cv−),y〉 −1

)
ρ(dy)

]
du

+
∫
R

SR−1−iu
v−

[
∑

j,k: j =k

(
Φk(v,T,u+ iR)e(R−iu)Ψ j,k −Φ j(v,T,u+ iR)

)(
eΨ j,k −1

)
H j

v−λ j,k
]
du
)

+ ∑
j,k∈K: j =k

β 2
v Sv−Z j,k(Sv−)

(
eΨ j,k −1

)
H j

v−λ j,k
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= (βvSv−)2

(
1

2π

∫
R

SR−1−iu
v−

[
∑

k∈K
G̃Cv−,k(R− iu)Φk(v,T,u+ iR)

]
du

+ ∑
j,k: j =k

S−1
v−Z j,k(Sv−)

(
eΨ j,k −1

)
H j

v−λ j,k

)
,

where

G̃ j, j(R− iu) :=(R− iu)〈Σ( j),Σ( j)〉+
∫
Rn

(
e(R−iu)〈Σ( j),y〉 −1

)(
e〈Σ( j),y〉 −1

)
ρ(dy)

− ∑
k∈K:k = j

(
eΨ j,k −1

)
λ j,k,

and for j = k

G̃ j,k(R− iu) := e(R−iu)Ψ j,k
(

eΨ j,k −1
)

λ j,k.

Letting Z j, j = 0 we can write

∑
j,k: j =k

S−1
v−Z j,k(Sv−)

(
eΨ j,k −1

)
H j

v−λ j,k =
1

Ss−
〈Z!(Ss−)Hs−,G(−i)!Hs−〉.

So it remains to show that

G̃(R− iu) = G(−u− i(R+1))−G(−u− iR)−diag(G(−i)�).

One can easily verify that[
(R− iu)〈Σ( j),Σ( j)〉+

∫
Rn

(eΣ( j)x −1)(e(R−iu)Σ( j)x −1)ν(dx)
]

= J1((−u− i(R+1))Σ( j))−J1((−u− iR)Σ( j))−J1(−iΣ( j)).

This implies, for any j ∈ K, that

G̃ j, j(R− iu) = J1((−u− i(R+1))Σ( j))−J1((−u− iR)Σ( j))−J1(−iΣ( j))−J2( j)
= G j, j(−u− i(R+1))−G j, j(−u− iR)− (G(−i)�) j, j.

Now let us consider off-diagonal elements of G̃. We fix j,k ∈ K, j = k and note that

G̃ j,k(R− iu) =
(

e(R+1−iu)Ψ j,k − e(R−iu)Ψ j,k
)

λ j,k

=
(

e(R+1−iu)Ψ j,k −1
)

λ j,k −
(

e(R−iu)Ψ j,k −1
)

λ j,k

= G j,k(−u− i(R+1))−G j,k(−u− iR)− (diag(G(−i)�)) j,k.

The proof is now complete.
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Abstract: In the paper we present two optimal stopping problems with a change of structure of rewards
at random time (called disorder time). The considered problems can be formulated as follows: a decision
maker observes offers which appear at jump times of a Poisson process. The decision concerning the
acceptance or the rejection of a presented offer is made at the moment of its appearance. Once rejected, the
offer cannot be considered again. A reward for the decision maker is equal to the discounted value of the
selected offer. The distribution of offers can change at random time. In the first problem we assume that
the decision maker does not know if the disorder time has appeared or not. In the second one the decision
maker knows it. The aim of the decision maker in both problems is to maximize the expected reward. In
the paper, an explicit solution of both problems and their comparison is presented. The influence of the
knowledge of the disorder time on the value of optimal mean reward is analysed.
Keywords: optimal stopping, Elfving problem, disorder time
Mathematics Subject Classification (2020): 60G40 (primary), 62L15

1. INTRODUCTION

The paper is inspired by the Elfving problem ([6], see also [4]). The Elfving problem is an
optimal stopping problem of independent, identically distributed random variables observed
sequentially at jump times of a Poisson process. The problem can be interpreted as follows:
we want to sell some commodity (for example a car or a house). At random times we obtain
offers, one at a time. The decision about the acceptance or the rejection of an offer must be
made at the time of its appearance. Once rejected, the offer cannot be taken into consideration
again. If we decide to accept the offer, we obtain a reward equal to the discounted value of
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the offer. Our aim is to maximize the expected reward from the sale. Contrary to the Elfving
problem, we do not assume that the offers have the same distribution, that is, we allow the
distribution of the offers to change at random time. Such time is called the disorder time.

The Elfving problem was formulated and solved in [6] and analysed subsequently in [22],
where an assumption was removed from the problem (see also [4]). Next, the problem was
modified and extended in different directions. In [5] renewal process and random horizon
with Gamma distribution was introduced. In [19] the assumption that rewards constitute
a Markov chain was considered. Random horizon in the Elfving problem was introduced in
[7] and in [12], where, additionally, a cost function was taken into consideration. Random
starting time of decision process was introduced in [10]. Multiperson games with rewards
the same as in the Elfving problem were presented in [8] and [16]. The allocation problem
inspired by the Elfving problem was considered in [1] and [9]. The Elfving problem was
generalized to multiple stopping problem in [23] and [24] and to multiple stopping problem
with random horizon in [14].

An optimal stopping problem in which the distribution of offers changes at random time
was introduced in [21]. The author considered the sequence of rewards {Gi}n

i=1, n < ∞
where distribution of Gi changes at random time. The offers have a uniform distribution
before and after the change but the distribution before the change stochastically dominates
the distribution after the change. The goal of the decision is to maximize the expected reward
at all stopping times τ with respect to {Fi}n

i=1, where Fi = σ(G1, . . . ,Gi). The paper [21]
was generalized in [17] to the case with imperfect information about the offers. Additionally,
in [17] the asymptotic behaviour of the solution was analysed. One-stopping problem with
reward structures as in the Elfving problem and a change of distribution of offers at random
time was considered in [15]. In [15], at each time it is known if the disorder time has appeared
or not.

In [2] two optimal stopping problems with random number of offers (random horizon)
are considered. In the first one it is assumed that the decision maker has full information
about the random horizon, i.e. at the beginning of the decision process he knows when the
random horizon will appear (in fact he knows how many offers he will receive). In the second
one, the decision maker knows only if the random horizon has already appeared or not. The
author analysed the dependencies between the optimal expected rewards in these problems
and compared the value of the optimal expected rewards for different parameters.

Lately, the detection problem (i.e. the problem in which the objective is to find a strategy
which immediately detects a change of distribution) with Poisson process, also called the
disorder problem, was considered in [3], [20] and [25]. In [25] an extensive bibliography on
the detection problem was presented.

In this paper we present two optimal stopping problems allowing a change of distribution
of offers in the Elfving problem: Problem A, in which we do not have the information about
the time of the change of the distribution of offers and Problem B, in which we have some
knowledge about the disorder time, i.e. we only known if the disorder time has already
appeared or not. In both cases we present differential equations which allow us to calculate
the optimal expected rewards in those problems. The numerical examples are also presented.
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2. FORMULATION OF TWO PROBLEMS

Let (Ω,F ,P) denote the basic probability space on which all random objects are consid-
ered. Let 0 < T1 < T2 < .. . be the jump times of a homogeneous Poisson process N(t), t ≥ 0,
with intensity 1 and T0 = 0. Moreover, let {Y (1)

n }∞
n=1 and {Y (2)

n }∞
n=1 be two sequences of in-

dependent, non-negative random variables (offers) with distribution functions Fi, i = 1,2,
respectively. We assume that μi = E(Y (i)

1 )< ∞ and Y (i)
0 = 0 for i = 1,2. Furthermore, there

is a given discount function r : [0,∞)→ [0,1] such that r is right-continuous, non-increasing,
r(0) = 1 and ∫ ∞

0
r(s)ds < ∞.

Additionally, assume that M is a non-negative random variable (called disorder time) with
distribution function FM such that E(M) < ∞. We assume that the sequences {Y (1)

n }∞
n=1,

{Y (2)
n }∞

n=1 and {Tn}∞
n=1 are independent and they are independent of M.

We will need some additional technical assumptions. We assume that one of the following
three conditions is satisfied:

(i) Y (i)
1 has a density fi which is continuous on R except for a finite number of points,

where i = 1,2.

(ii) P(Y (1)
1 = 0) = 1 and Y (2)

1 has a density f2 which is continuous on R except for a finite
number of points.

(iii) P(Y (2)
1 = 0) = 1 and Y (1)

1 has a density f1 which is continuous on R except for a finite
number of points.

Moreover, we assume that the functions r and FM are discontinuous at most at a finite num-
ber of points. Let a set {s0, . . . ,sk}, where 0 = s0 < s1 < .. . < sk−1 < sk = U, k < ∞ and
U = sup{s > 0 : r(s)> 0}, contain all points of discontinuity of function r and all points of
discontinuity of function FM on [0,U) and points a and UM, where a = sup{x ≥ 0 : FM(x)
= 0}, UM = inf{s ≥ 0 : r1(s) = 0},

r1(s) = r(s)F̄M(s),

F̄M(s) = 1−FM(s). We will also use the following notation:

r2(s) = r(s)FM(s),

where s ∈ [0,∞).

Let us introduce the following σ -fields:

Fn = σ(Y (1)
1 , . . . ,Y (1)

n ,Y (2)
1 , . . . ,Y (2)

n ,T1,T2, . . . ,Tn), n ≥ 1,
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F0 = { /0,Ω}, F∞ = σ(
⋃

n∈N0
Fn),

Gn = σ(Fn,σ(I(M > T0), . . . ,I(M > Tn))), n ≥ 0,

G∞ = σ(
⋃

n∈N0
Gn), where I(A) is the indicator function of an event A. Let us also introduce

two sets of all stopping times M and M∗, with respect to filtrations {Fn}∞
n=0 and {Gn}∞

n=0,
respectively. Let Mn = {τ ∈ M : τ ≥ n} and M∗

n = {τ ∈ M∗ : τ ≥ n}, n ≥ 1. Note that the
considered stopping times can be equal to infinity with positive probability.

Let
Gn = (Y (1)

n I(M > Tn)+Y (2)
n I(M ≤ Tn))r(Tn), n ≥ 0,

G∞ = limsupn→∞ Gn. Random variable Gn is interpreted as a reward obtained by the decision
maker if the nth offer is accepted. Note that if the disorder time has not appeared yet (i.e.
M > Tn), then the value of the offer is equal to Y (1)

n , otherwise the value of the offer is Y (2)
n .

In this paper, we will consider two optimal stopping problems called Problem A and
Problem B. In Problem A we are looking for an optimal stopping time τ1 ∈ M1 for the
sequence {Gn}∞

n=0 and the optimal expected reward E(Gτ1) i.e.

E(Gτ1) = sup
τ∈M1

E(Gτ).

In Problem B we are looking for an optimal stopping time τ∗
1 ∈ M∗

1 for the sequence
{Gn}∞

n=0 and the optimal expected reward E(Gτ∗
1
) i.e.

E(Gτ∗
1
) = sup

τ∈M∗
1

E(Gτ).

Note that we are looking for the solution of the above problems in different sets of stopping
times.

The motivation to consider these two problems is the following observation: it is obvious
that

sup
τ∈M1

E(Gτ) ≤ sup
τ∈M∗

1

E(Gτ). (1)

Now, the question is: Can the above inequality be replaced by equality? It is obvious that
the answer for this question is yes if P(M = m) = 1 for some m ∈ R or P(M > U) = 1.
In [7] (see also [15] for an alternative proof) it was proven that the answer is also yes if
P(Y (2)

1 = 0) = 1. Another question is how big is the difference between the values of the
optimal expected rewards in these problems? We will present examples showing that the
difference can be substantial.

Since the case of P(M > U) = 1 (which reduces it to the original Elfving problem) and
the case of P(Y 2

1 = 0) = 1 (which is the Elfving problem with random horizon) are already
completely solved (see [6] or [4] and [7] or [15]), we will assume from now on that P(M <
U) > 0 and one of the assumptions (i) or (ii) from this section is satisfied. Moreover, if
P(Y (1)

1 = 0) = 1, we put f1(s) = 0 for s ∈ R.
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2.1. PROBLEM A

In this section, we present the solution of Problem A. The problem was formulated in [18]
and is a generalization of the one considered in [11]. The method of solving this problem is
based on [4, pp. 113-118].

For u ≥ 0 define

G̃n(u) = Y (1)
n r1(u+Tn)+Y (2)

n r2(u+Tn), n ∈ N0,

G̃∞(u) = limsup
n→∞

G̃n(u).

Let
G̃n = G̃n(0), n ≥ 0.

Let us note that for u ≥ 0 we have E(∑∞
n=0 G̃n(u)) ≤ (μ1 +μ2)

∫ ∞
0 r(u+ x)dx < ∞, hence

G̃∞(u) = limn→∞ G̃n(u) = 0, and E(supn≥0 G̃n(u)) < ∞. Moreover, note that
E(∑∞

n=0 Gn)≤ (μ1+μ2)
∫ ∞

0 r(x)dx<∞, hence G∞ = limn→∞ Gn = 0, and E(supn≥0 Gn)<∞.
Hence, all considered expectations are well defined.

In the theorem below we will show that the optimal stopping problem of the sequence
{Gn}∞

n=0 in the set of stopping times M1 can be replaced by the optimal stopping problem
of the sequence {G̃n}∞

n=0 in the set M1.

Theorem 1. In the considered problem we have

sup
τ∈M1

E(Gτ) = sup
τ∈M1

E(G̃τ).

Proof. It is enough to show that for each τ ∈ M1 we have E(Gτ) = E(G̃τ). Let τ ∈ M1.
Then

E(Gτ) = E
( ∞

∑
n=1

GnI(τ = n)
)
+E(G∞I(τ = ∞)) =

∞

∑
n=1

E(GnI(τ = n))+E(G∞I(τ = ∞)).

Note that Gn is a function of Fn-measurable random variables and a random variable M
which is independent of Fn. Hence E(GnI(τ = n)) = E(G̃nI(τ = n)) for n ∈N. Additionally,
we have G∞ = 0 and G̃∞ = G̃∞(0) = 0. Hence, we get the assertion.

To solve the optimal stopping problem for the reward sequence {G̃n} we will find an op-
timal stopping time τ1(u) ∈ M1 for the sequence {G̃n(u)} and the optimal expected reward
E(G̃τ1(u)(u)) i.e.

E(G̃τ1(u)(u)) = sup
τ∈M1

E(G̃τ(u)).

Introducing u in the considered problem allows us to derive a differential equation for the
optimal expected reward.
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Theorem 2. There exists a Borel function V : R+
0 → R

+
0 such that

E(Sn+1(u) | Fn) =V (u+Tn), n ∈ N0,

where Sn(u) = esssupτ∈Mn
E(G̃τ(u) | Fn), n ∈ N0.

Proof. Note that {Xn,u,Fn}∞
n=0, where Xn,u = (Y (1)

n ,Y (2)
n ,u+Tn), u ≥ 0, is a homogeneous

Markov chain. Moreover, G̃n(u) is a function of Xn,u only. Hence, using [4, Thms. 4.7 and
5.2] we get the assertion.

In the theorem below we present the form of the optimal stopping time and the optimal
expected reward for the sequence {G̃n(u)}∞

n=0.

Proposition 3. Let u ≥ 0. Then:

(i) The stopping time
τ1(u) = inf{n ≥ 1 : G̃n(u) ≥ V (u+Tn)} (2)

is optimal in M1 for {G̃n(u)}∞
n=0.

(ii)
sup

τ∈M1

E(G̃τ(u)) =V (u). (3)

Proof. The first part of the theorem follows from [4, Thm. 4.5’, p. 82] and Theorem 2. The
second one follows from [4, Thms 4.1 and 4.7] and Theorem 2.

Before we formulate the theorem presenting the distribution function of the random vari-
able Tτ1(u), we prove some properties of the function V (u).

Proposition 4. V (·) is continuous on [0,∞).

Proof. Let u1,u2 ∈ [0,∞). Using (3) we obtain

|V (u1)−V (u2)| ≤ sup
τ∈M1

|E(G̃τ(u1))−E(G̃τ(u2))|

≤ sup
τ∈M1

|E(Y (1)
τ (r1(u1 +Tτ)− r1(u2 +Tτ)))|+ sup

τ∈M1

|E(Y (2)
τ (r2(u1 +Tτ)− r2(u2 +Tτ)))|.

For i = 1,2 we have

sup
τ∈M1

|E(Y (i)
τ (ri(u1 +Tτ)− ri(u2 +Tτ)))| ≤

∞

∑
n=1

E(Y (i)
n |ri(u1 +Tn)− ri(u2 +Tn)|)

= μi

∫ ∞

0
|ri(u1 + x)− ri(u2 + x)|dx.
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From monotonicity and boundedness of r1 we get∫ ∞

0
|r1(u1 + x)− r1(u2 + x)|dx ≤ |u1 −u2|.

Additionally, from the definition of r2 we obtain

|r2(u1 + x)− r2(u2 + x)|
= |r(u1 + x)− r(u2 + x)+ r(u2 + x)F̄M(u2 + x)− r(u1 + x)F̄M(u1 + x)|
≤ |r(u1 + x)− r(u2 + x)|+ |r1(u2 + x)− r1(u1 + x)|.

Hence using monotonicity and boundedness of the functions r and r1 we get∫ ∞

0
|r2(u1 + x)− r2(u2 + x)|dx ≤ 2|u1 −u2|.

Therefore,
|V (u1)−V (u2)| ≤ (μ1 +2μ2)|u1 −u2|.

Thus, the Lipschitz condition is satisfied.

Fact 5. V (s)> 0 for s ∈ [0,U). Moreover, if U < ∞, then V (s) = 0 for s ≥ U; if U = ∞, then
lims→∞V (s) = 0.

Proof. Note that V (s) ≥ E(G̃1(s))> 0 for s ∈ [0,U). If U < ∞ and s ≥ U , then r(x) = 0 for
x ≥ s, hence V (s) = 0 for s ≥ U. The last part follows from the inequality

V (s) ≤ (μ1 +μ2)
∞∫
s

r(x)dx.

To find τ1(u) and V (u), u ∈ [0,U), we need to find the distribution of Tτ1(u). Let

fu(v) = P(Tτ1(u) > v), v ∈ [0,∞).

Fact 6. The function fu is continuous on [0,∞) and fu(0) = 1.

For x ≥ 0 define
g(x, t) = P(Y (1)

1 r1(x)+Y (2)
1 r2(x)< t).

Then, for x ≥ 0 we have g(x, t) = 0 for t ≤ 0. Moreover, for x ≥ 0 and t > 0,

g(x, t) =

⎧⎪⎪⎨⎪⎪⎩
F1(

t
r1(x)

), x ∈ [0,a)∨ (x = a∧FM(a) = 0),
∞∫
0

F2
( t−sr1(x)

r2(x)

)
f1(s)ds+F2

( t
r2(x)

)
P(Y (1)

1 = 0), x ∈ (a,U)∨ (x = a∧FM(a)> 0),

1, x ≥ U.

(4)

Note that 0 ≤ a <U from the assumption of the problem.

In the theorem below we present the form of the tail of distribution of the random variable
Tτ1(u).
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Theorem 7. For u ∈ [0,U) the function fu(·) has the following form:

fu(v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for v < 0,

exp
(
− ∫ u+v

u 1−g(t,V (t))dt
)

for v ∈ [0,a−u),

fu(a−u)exp
(
−

u+v∫
a

1−g(t,V (t))dt
)

for v ∈ [max{0,a−u},U −u),

fu(U −u)exp(U −u− v) for v ∈ [U −u,∞).

Proof. Before we start the main part of the proof, for x1,x2 ≥ 0 and t ∈ R let
g1(x1,x2, t) = P(Y (1)

1 r1(x1) + Y (2)
1 r2(x2) < t). Note that g1(x1,x2, t) = 0 for t ≤ 0 and

x1,x2 ≥ 0. Moreover, for t > 0 and x1,x2 ≥ 0 we have

g1(x1,x2, t)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∫
0

F2
( t−sr1(x1)

r2(x2)

)
f1(s)ds

+F2
( t

r2(x2)

)
P(Y (1)

1 = 0), x1 ≥ 0∧ (x2 ∈ (a,U)∨ (x2 = a∧FM(a)> 0)),
F1(

t
r1(x1)

), x1 <UM ∧ (x2 ∈ [0,a)∪ [U,∞)∨ (x2 = a∧FM(a) = 0),
1, x1 ≥ UM ∧ (x2 ∈ [0,a)∪ [U,∞)∨ (x2 = a∧FM(a) = 0)).

Now we can derive the formula for fu(v). Let u ∈ [0,U). If v < 0, then fu(v) = 1. Now
assume that v ≥ 0. For h > 0 we have

fu(v+h) = P1 +P2 +P3, (5)

where
P1 = P(Tτ1(u) > v+h,ΔN(v,v+h) = 0),
P2 = P(Tτ1(u) > v+h,ΔN(v,v+h) = 1),
0 ≤ P3 ≤ P(ΔN(v,v+h) ≥ 2) = 1− (1+h)exp(−h)

and ΔN(v,v+h) = N(v+h)−N(v). Let Hv = σ(N(s),s ≤ v,Y (1)
1 , . . . ,Y (1)

N(v),Y
(2)
1 , . . . ,Y (2)

N(v)).

Then

P1 = P(Tτ1(u) > v,ΔN(v,v+h) = 0) = P(τ1(u)> N(v),ΔN(v,v+h) = 0)

= E(P(τ1(u)> N(v),ΔN(v,v+h) = 0 | Hv))

= E(I(τ1(u)> N(v))P(ΔN(v,v+h) = 0)) = exp(−h) fu(v).

For i = 1,2 define xi and x̃i such that xi ∈ (u+ v,u+ v+ h], ri(xi) = infx∈(0,h] ri(u+ v+ x),
x̃i ∈ (u+ v,u+ v+h] and ri(x̃i) = supx∈(0,h] ri(u+ v+ x). Then

P2 = P(Tτ1(u) > v,ΔN(v,v+h) = 1, G̃N(v)+1(u)<V (u+TN(v)+1))

≥ P(τ1(u)> N(v),ΔN(v,v+h) = 1,Y (1)
N(v)+1r1(x̃1)+Y (2)

N(v)+1r2(x̃2)< inf
x∈(0,h]

V (u+ v+ x))

= g1(x̃1, x̃2, inf
x∈(0,h]

V (u+ v+ x))P(Tτ1(u) > v,ΔN(v,v+h) = 1)

= g1(x̃1, x̃2, inf
x∈(0,h]

V (u+ v+ x))hexp(−h) fu(v).
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Similarly, we get

P2 ≤ g1(x1,x2, sup
x∈(0,h]

V (u+ v+ x))hexp(−h) fu(v).

Hence,

exp(−h) fu(v)− fu(v)+hexp(−h)g1(x̃1, x̃2, infx∈(0,h]V (u+ v+ x)) fu(v)
h

≤ fu(v+h)− fu(v)
h

≤

≤
exp(−h) fu(v)− fu(v)+hexp(−h)g1(x1,x2,supx∈(0,h]V (u+ v+ x)) fu(v)

h

+
1− exp(−h)(1+h)

h
.

Now, we will consider three cases. First, if a > 0 and 0 ≤ u+ v < a, then take h > 0
such that [u+ v − h,u+ v+ h] ⊂ (si,si+1)∩ [0,a) for some i ∈ {0,1, . . . ,k − 1}. Note that
infx∈(0,h]V (u+v+x)> 0 and supx∈(0,h]V (u+v+x)> 0. Hence, g1 is continuous in the con-
sidered interval as a result of selecting xi and x̃i. Letting h converge to zero and using the ob-
servation g(x, t) = g1(x,x, t) for x ≥ 0 and t > 0 we get
f ′u(v

+) = fu(v)(g(u+ v,V (u+ v))−1). Similarly, estimating fu(v) with fu(v−h) for h > 0
we get f ′u(v

−) = fu(v)(g(u+ v,V (u+ v))−1). Hence,

f ′u(v) = fu(v)(g(u+ v,V (u+ v))−1)

for u+ v ∈ (si,si+1)∩ [0,a), i ∈ {0,1, . . . ,k −1}. Solving the above differential equation in
each interval (si,si+1) and using the boundary condition fu(0) = 1 and continuity of fu we
get the assertion in this case.

Now, assume that a ≤ u+ v < U . Take h > 0 such that [u+ v− h,u+ v+ h] ⊂ (si,si+1)
∩[a,U) for some i ∈ {0,1, . . . ,k−1}. As a result of the selection of u,v,h we obtain that g1 is
also continuous in this case. Hence, similarly to the previous case, we get
f ′u(v) = fu(v)(g(u+ v,V (u+ v))− 1) for u+ v ∈ (si,si+1)∩ [a,U), i ∈ {0,1, . . . ,k − 1}. If
a > 0, then using continuity of function fu and the formula for fu(v) for u + v ∈ [0,a)
we get the boundary condition fu(a − u). If a = 0, then the boundary condition becomes
fu(a−u) = 1. Next, we solve the above differential equation with this boundary condition.
Hence, using continuity of function fu we get fu for a ≤ u+ v <U .

Now, let us consider the last case. Assume that u + v ≥ U . Take h > 0 such that
u + v − h ≥ U . Note that TN(v)+1 > v, so u + TN(v)+1 > U . Hence, r1(u + TN(v)+1) = 0
and r2(u+TN(v)+1) = 0. Therefore, V (u+TN(v)+1) = 0 and G̃N(v)+1(u) = 0. Consequently,
P2 = 0. Hence, using (5), similarly to the first case, we get f ′u(v) = − fu(v). This differential
equation is solved with the boundary condition fu(U −u) given in the second case.

To find the function V (u), we define a function H(x,s) and prove two lemmas.
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For s > 0 and x ∈ [0,∞) define

H(x,s) = E((Y (1)
1 r1(x)+Y (2)

1 r2(x))I(Y
(1)
1 r1(x)+Y (2)

1 r2(x) ≥ s))

and for s ∈ R

Hi(s) = E(Y (i)
1 I(Y (i)

1 ≥ s)), i = 1,2.

Lemma 8. Let s > 0 and x ∈ [0,∞). Then

H(x,s)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r1(x)H1
( s

r1(x)

)
, x ∈ [0,a)∨ (x = a∧FM(a) = 0),

∞∫
0

f1(y)
(

r2(x)H2
( s−yr1(x)

r2(x)

)
+ yr1(x)F̄2

( s−yr1(x)
r2(x)

))
dy

+r2(x)P(Y
(1)
1 = 0)H2

( s
r2(x)

)
, x ∈ (a,U)∨ (x = a∧FM(a)> 0),

0, x ≥ U.

Proof. For x ∈ [0,U) and t > 0 we have

∂g(x, t)
∂ t

=

⎧⎪⎪⎨⎪⎪⎩
f1
( t

r1(x)

) 1
r1(x)

, x ∈ [0,a)∨ (x = a∧FM(a) = 0),
∞∫
0

f2
( t−sr1(x)

r2(x)

) f1(s)
r2(x)

ds+ f2
( t

r2(x)

)P(Y (1)
1 =0)

r2(x)
, x ∈ (a,U)∨ (x = a∧FM(a)> 0),

0, x ≥ U.
(6)

Therefore,

H(x,s) =
∞∫

s

t · ∂g(x, t)
∂ t

dt.

Hence, using (6) for x <U and the fact that r1(x) = r2(x) = 0 for x ≥U we get the assertion.

Lemma 9. For u ∈ [0,U) on the event {Tτ1(u) ∈ [0,U −u)} we have

E(G̃τ1(u)(u) | τ1(u),Tτ1(u)) =
H(u+Tτ1(u),V (u+Tτ1(u)))

1−g(u+Tτ1(u),V (u+Tτ1(u)))
.

Moreover, if U < ∞, then on the event {Tτ1(u) ∈ [U − u,∞)} we have
E(G̃τ1(u)(u) | τ1(u),Tτ1(u)) = 0.

Proof. First, we prove the first part of the lemma. Let A = {τ1(u) = k,Tk ∈ C}, where
C ∈ B(R+

0 ), k ∈ N. Let D = C ∩ [0,U − u) and Zk−1(u) = {G̃1(u) < V (u + T1),
G̃2(u)<V (u+T2), ..., G̃k−1 <V (u+Tk−1)}. It is enough to show that∫

A
G̃τ1(u)(u)I(Tτ1(u) ∈ [0,U −u))dP =

∫
A

H(u,V (u+Tτ1(u)))

1−g(u,V (u+Tτ1(u)))
I(Tτ1(u) ∈ [0,U −u))dP.

(7)
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Using (2), we get that the left hand side of (7) is equal to

E(G̃k(u)I(Tk ∈ D,Zk−1(u), G̃k(u) ≥ V (u+Tk)))

= E(E(G̃k(u)I(Tk ∈ D,Zk−1(u), G̃k(u) ≥ V (u+Tk)) | G̃1(u), ..., G̃k−1(u),T1, ...,Tk))

= E(I(Tk ∈ D,Zk−1(u))E(G̃k(u)I(G̃k(u) ≥ V (u+Tk)) | Tk))

= E(I(Tk ∈ D,Zk−1(u))H(u+Tk,V (u+Tk))).

Moreover, the right hand side of (7) is equal to

E
( H(u+Tk,V (u+Tk))

1−g(u+Tk,V (u+Tk))
I(Tk ∈ D,Zk−1(u), G̃k(u) ≥ V (u+Tk))

)
= E

(
E
( H(u+Tk,V (u+Tk))

1−g(u+Tk,V (u+Tk))
I(Tk ∈ D,Zk−1(u), G̃k(u) ≥ V (u+Tk))

| G̃1(u), ..., G̃k−1(u),T1, ...,Tk

))
= E

( H(u+Tk,V (u+Tk))

1−g(u+Tk,V (u+Tk))
I(Tk ∈ D,Zk−1(u))E(I(G̃k(u) ≥ V (u+Tk)) | Tk)

)
= E(H(u+Tk,V (u+Tk))I(Tk ∈ D,Zk−1(u))).

Hence, we get (7).

The second part of the lemma follows from the assumption that r(s) = 0 for s ≥ U.

In the theorem below we present an integral equation satisfied by the function V (u).

Theorem 10. Function V (u) for u ∈ [0,U) satisfies the following equation:

V (u) =
∫ U

u
H(v,V (v)) fu(v−u)dv. (8)

Proof. Let u ∈ [0,U). Using Proposition 3 and Lemma 9 we get

V (u) =
∞∫

0

H(u+ v,V (u+ v))
1−g(u+ v,V (u+ v))

· d(1− fu(v))
dv

dv.

Hence, using the definition of H(x,s) and Fact 5 we obtain H(u + v,V (u + v)) = 0 for
v ≥ U −u. Therefore, from Theorem 7 we get the assertion.

In the theorem below we show that the function V (u) is uniquely determined by (8).

Theorem 11. Let Ṽ (u) satisfy (8) for u ∈ [0,U), and if U < ∞, let Ṽ (u) = 0 for u ≥U. Then
Ṽ (u) =V (u) for u ∈ [0,∞).
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Proof. Let Ṽ satisfy the assumptions of the theorem. Define τ̃(u) = inf{n ≥ 1 : G̃n(u) ≥
Ṽ (u+Tn)}, u ≥ 0. Following the methods in Theorems 7 and 10 we get

E(G̃τ̃(u)(u)) = Ṽ (u). (9)

Note that I(τ̃(u) ≥ 2)E(G̃τ̃(u)(u) | F1) = I(G̃1(u)< Ṽ (u+T1))Ṽ (u+T1). Therefore,

Ṽ (u) = E(I(τ̃(u) = 1)G̃1(u)+ I(τ̃(u) ≥ 2)E(G̃τ̃(u)(u) | F1))

= E(I(G̃1(u) ≥ Ṽ (u+T1))G̃1(u)+ I(G̃1(u)< Ṽ (u+T1))Ṽ (u+T1))

= E(max{G̃1(u),Ṽ (u+T1)}).
Let S̃(y1,y2,u) = max{y1r1(u) + y2r2(u),Ṽ (u)} for y1,y2,u ∈ [0,∞). Hence,
E(S̃(Y (1)

1 ,Y (2)
1 ,u+T1)) = Ṽ (u). Consequently,

E(S̃(Y (1)
n+1,Y

(2)
n+1,Tn+1) | Fn) = Ṽ (Tn).

Define S̃n = S̃(Y (1)
n ,Y (2)

n ,Tn), n ∈ N0, and S̃∞ = limsupn→∞ S̃n. Then

S̃n = max{G̃n,Ṽ (Tn)} (10)

and
E(S̃n+1 | Fn) = Ṽ (Tn). (11)

From (10) we obtain S̃n ≥ G̃n.

Note that Ṽ (u) = 0 for u ≥ U if U < ∞. Moreover, if U = ∞, then from (9) we have
Ṽ (u) ≤ (μ1 + μ2)

∫ ∞
u r(x)dx. Hence, lim

u→∞
Ṽ (u) = 0. Therefore, for U ∈ [0,∞] we have

lim
n→∞

Ṽ (Tn) = 0. Consequently, from the fact that lim
n→∞

G̃n = 0 and from (10) we have

S̃∞ = lim
n→∞

S̃n = 0. Additionally, we have Ṽ (Tn) ≤ (μ1 + μ2)
∫ ∞

0 r(Tn + x)dx. Therefore,
from (10) for n ∈ N0 we have

S̃n ≤ G̃n +Ṽ (Tn) ≤
∞

∑
k=0

G̃k +(μ1 +μ2)
∫ ∞

0
r(Tn + x)dx =: W. (12)

Note that E(W )< ∞. Since S̃n is Fn-measurable, using (12) we get S̃n ≤ E(W | Fn). Hence,
from [4, Lem. 4.9]

S̃n ≤ Sn, (13)

where Sn = Sn(0), n ≥ 0. Additionally, from [4, Thm. 4.6] it follows that {Sn,Fn}∞
n=0 is

the minimal supermartingale dominating {G̃n,Fn}∞
n=0. Moreover, from (10) and (11) we

get that {S̃n,Fn}∞
n=0 is the supermartingale dominating {G̃n,Fn}∞

n=0. Hence, from (13) we
obtain S̃n = Sn. Therefore, from (11) and Theorem 2 we get

Ṽ (Tn) =V (Tn). (14)

Now, we only need to show that Ṽ (u) =V (u) for u ∈ [0,U). Let A = {u ∈ [0,U) : Ṽ (u) =
V (u)}. Assume that the Lebesgue measure μ(A)> 0. Then P({ω : Tn(ω) ∈ A})> 0, which
contradicts (14). Hence, using continuity of V and Ṽ we get the assertion. Note that the
continuity of Ṽ follows from (8) and from the fact that the functions H and fu are bounded.
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In the theorem below we show that the problem of finding the solution of integral equation
(8) is equivalent to the problem of finding the solution of differential equation (15).

Theorem 12. Let function Ṽ (·) be continuous on [0,∞). Moreover, let

• Ṽ (u) = 0 for u ≥ U, if U < ∞, and

• lims→∞ Ṽ (s) = 0, if U = ∞.

Then Ṽ (u), u ∈ [0,U), satisfies (8) if and only if
d
du

Ṽ (u) = Ṽ (u)(1−g(u,Ṽ (u)))−H(u,Ṽ (u)) (15)

for u ∈ (si,si+1), i ∈ {0,1, . . . ,k−1}.

Proof. (⇒) It is enough to differentiate both sides of (8) with respect to u in each of the inter-
vals (si,si+1). Then we see that Ṽ satisfies (15) in the intervals (si,si+1),
i ∈ {0,1, . . . ,k−1}.

(⇐) Assume that Ṽ satisfies the assumptions of the theorem and (15) in each of the
intervals (si,si+1), i ∈ {0,1, . . . ,k−1}. Define V1(u) as follows:

V1(u) =
∫ U

u
H(v,Ṽ (v)) f̃u(v−u)dv for u ∈ [0,U) (16)

and if U < ∞, then V1(u) = 0 for u ≥ U, where

f̃u(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for s < 0,

exp
(
− ∫ u+s

u 1−g(t,Ṽ (t))dt
)

for s ∈ [0,a−u),

f̃u(a−u)exp
(
−

u+s∫
a

1−g(t,Ṽ (t))dt
)

for s ∈ [max{0,a−u},U −u),

f̃u(U −u)exp(U −u− s) for s ∈ [U −u,∞).

If U <∞, then V1(u) =V (u) = 0 for u ≥U (Fact 5). If U =∞, then lim
s→∞

V1(s) = lim
s→∞

V (s) = 0

(Fact 5). Hence, we need to show that V1(u) = Ṽ (u) for u ∈ [0,U). Differentiating (16) in
each of the intervals (si,si+1) we get

d
du

V1(u) =V1(u)(1−g(u,Ṽ (u)))−H(u,Ṽ (u)).

Hence,
d(V1(u)−Ṽ (u))

du
= (1−g(u,Ṽ (u)))(V1(u)−Ṽ (u)).

Assume that V1(u0) = Ṽ (u0) for some u0 ∈ (sk−1,U). Let u1 = inf{s ∈ (u0,U) : V1(s) =
Ṽ (s)}. If such u1 does not exist, we take u1 =U. Hence, for u ∈ (u0,u1)

ln |V1(u)−Ṽ (u)| = ln |V1(u0)−Ṽ (u0)|+
∫ u

u0

(1−g(t,Ṽ (t)))dt. (17)

Note that limu→u1 ln |V1(u)− Ṽ (u)| = −∞ while for u → u1 the right hand side of (17) is
finite. From the contradiction we get V1(u) = Ṽ (u) for u ∈ (sk−1,U). Using continuity of
functions V1 and Ṽ we get V1(u) = Ṽ (u) for u ∈ [sk−1,U ]. Using recursion we show that
V1(u) = Ṽ (u) in each of the intervals [si,si+1], i = k−2, . . . ,0.
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2.2. PROBLEM B

The presented problem can be found in [15] (see also [13]).

In this section we additionally assume that UM <∞. Moreover, we assume that if Y (1)
1 = 0,

then FM is increasing on (u0,UM), where u0 ∈ [0,UM) or UM <U . Let {s̃0, s̃1, . . . , s̃k̃}, where
0 = s̃0 < s̃1 < .. . < s̃k̃−1 < s̃k̃ = U, contain all points of discontinuity of the function r.
Moreover, let {a0,a1, . . . ,al}, where 0 = a0 < a1 < .. . < al−1 < al =UM, contain all points
of discontinuity of function r on [0,UM] and points of indifferentiability of FM on [0,UM].
We assume that k̃ < ∞ and l < ∞.

Theorem 13 ([4]). There exists exactly one function V2(·) satisfying the following differential
equation:

d
du

V2(u) = F̄2(y2(u))V2(u)− r(u)H2(y2(u)), (18)

in each of the intervals (s̃i, s̃i+1), i ∈{0, . . . , k̃−1}, such that V2(u) is continuous for u ∈ [0,U ]
and

lim
u→U

V2(u) = 0,

where

y2(u) =

{
V2(u)
r(u) , u <U,

0, u ≥ U.

Note that V2(0) is the optimal expected reward for the sequence {Y (2)
n r(Tn)}∞

n=1 in the
original Elfving problem.

In all theorems below we assume that V2(·) is as in Theorem 13.

In the first part of Theorem 14 we introduce a function V1(u,1) which is uniquely deter-
mined by differential equation (19). Both V1(u,1) and V2(u) are used in the second and the
third part of the theorem to compute the optimal expected reward and the optimal stopping
time for the sequence {Gn}∞

n=0 in the set of stopping times M∗
1.

Theorem 14 ([15]). (i) There exists exactly one function V1(·,1) satisfying the following
differential equation:

d
du

(F̄M(u)V1(u,1))+
dFM(u)

du
V2(u) = F̄M(u)(F̄1(y1(u,1))V1(u,1)− r(u)H1(y1(u,1)))

(19)

in each of the intervals (ai,ai+1), i ∈ {0, . . . , l − 1}, such that
F̄M(u)V1(u,1)+FM(u)V2(u) is continuous for u ∈ [0,UM] and

lim
u→U−

M

F̄M(u)V1(u,1) =V2(UM)P(M =UM), (20)

where for u ∈ [0,UM)

y1(u,1) =
V1(u,1)

r(u)
.
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(ii) The optimal expected reward for the sequence {Gn}∞
n=0 has the form

sup
τ∈M∗

1

E(Gτ) =V1(0,1)F̄M(0)+V2(0)FM(0).

(iii) An optimal stopping time in M∗
1 for the sequence of rewards {Gn}∞

n=0 has the form

τ∗
1 = inf{n ≥ 1 : (M > Tn,Y

(1)
n ≥ y1(Tn,1)) or (M ≤ Tn,Y

(2)
n ≥ y2(Tn))}.

Note that the optimal stopping time in M∗
1 for the sequence {Gn} has the following inter-

pretation: assume that we are at the time of the arrival of the nth offer. If the disorder time M
has not appeared yet (i.e. M > Tn), then we stop if the value of the offer Y (1)

n is greater than
or equal to y1(Tn,1); if the disorder time has already appeared (i.e. M ≤ Tn), then we stop if
the value of the offer Y (2)

n is greater than or equal to y2(Tn).

Let us present the solutions of two special cases of the problem. The first one is called the
optimal stopping problem with random starting time.

Theorem 15 ([10]). If P(Y (1)
1 = 0) = 1, then

sup
τ∈M∗

1

E(Gτ) =
∫ U

0
r(v)H2(y2(v)) f0(v)dv−

∫ UM

0
r1(v)H2(y2(v))dv,

where
f0(v) = f (2)0 (v)+

∫ v

0
F̄M(t)F̄2(y2(t)) f (2)t (v− t)dt

and

f (2)u (v) = exp
(
−
∫ u+v

u
F̄2(y2(s))ds

)
.

Now, we will present the second special case of the problem, i.e. the case when M has
a discrete distribution.

Theorem 16 ([15]). Assume that r(s) = I(s ∈ [0,U)), U < ∞, and P(M = an) = pn, where
0 ≤ a0 < a1 < a2 < .. . and ∑∞

n=0 pn = 1. Then V1(u,1) is uniquely determined by the follow-
ing conditions:

(i) In each interval (ai,ai+1), i ∈ {0,1, . . . , l −1}, the function V1(·,1) satisfies the differ-
ential equation

d
du

V1(u,1) = F̄1(V1(u,1))V1(u,1)−H1(V1(u,1)).

(ii) F̄M(u)V1(u,1) + FM(u)V2(u) is continuous for u ∈ [0,UM] and
lims→U−

M
V1(s,1) =V2(UM).
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3. EXAMPLES

In all the examples below we assume that

r(s) =
{

1, s ≤ 10,
0, s > 10.

Hence, U = 10. Moreover, we assume that Y (2)
1 has the exponential distribution with pa-

rameter β2 > 0. Then F2(x) = 1− exp(−β2x) for x ≥ 0 and F2(x) = 0 for x < 0. Moreover,
H2(x) = (x+ 1

β2
)exp(−β2x) for x ≥ 0 and H2(x) = 1

β2
for x < 0. Hence, (18) has the form

dV2(u)
du

= − 1
β2

exp(−β2V2(u)).

Solving the above differential equation with the boundary condition V2(U) = 0 and using
continuity of V2 we get

V2(u) =
1
β2

ln(1+U −u), u ∈ [0,U ]. (21)

Note that V2(0) is the optimal expected reward for the sequence {Y (2)
n r(Tn)}∞

n=0 in the
original Elfving problem.

To simplify the notation in all the examples below we will write A= supτ∈M1
E(Gτ) and

B= supτ∈M∗
1
E(Gτ).

Example 17. Let Y (1)
1 have the exponential distribution with the parameter β1 > 0. More-

over, let M have two point distribution, i.e. P(M = m1) = p, P(M = m2) = q, q = 1 − p,
where 0 < m1 < m2 < U and p ∈ (0,1). First, let us find the optimal expected reward in
Problem A. Note that a = m1. We consider two cases. First, assume that qβ2 − pβ1 = 0.
Then, using the definition of r1 and r2, we get that for u ∈ [0,U)

g(u,V (u)) =

⎧⎪⎨⎪⎩
F1(V (u)), 0 ≤ u < m1,

1
qβ2−pβ1

(
qβ2F1

(V (u)
q

)
− pβ1F2

(V (u)
p

))
, m1 ≤ u < m2,

F2(V (u)), m2 ≤ u <U

and

H(u,V (u)) =

⎧⎪⎨⎪⎩
H1(V (u)), 0 ≤ u < m1,

1
qβ2−pβ1

(
q2β2H1

(V (u)
q

)
− p2β1H2

(V (u)
p

))
, m1 ≤ u < m2,

H2(V (u)), m2 ≤ u <U.

Hence, if qβ2 − pβ1 = 0, then the function V (u) satisfies

dV (u)
du

=

⎧⎪⎨⎪⎩
− 1

β1
exp(−β1V (u)), 0 < u < m1,

1
β2q−pβ1

( p2β1
β2

exp
(
− β2V (u)

p

)
− q2β2

β1
exp
(
− β1V (u)

q

))
, m1 < u < m2,

− 1
β2

exp(−β2V (u)), m2 < u <U.

(22)
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The above differential equation should be solved numerically in consecutive intervals:
(m2,U), (m1,m2), (0,m1). Let u ∈ (m2,U). Solving the above differential equation we get
V (u) = 1

β2
ln(1 + U − u) for u ∈ (m2,U). Now, using continuity of V we obtain

V (m2) =
1
β2

ln(1 +U − m2). So we solve (22) for u ∈ (m1,m2) with boundary condition

V (m2) =
1
β2

ln(1+U −m2). Hence, we get V (m1), which is the boundary condition for (22)
when u ∈ (0,m1). Hence, for u ∈ [0,m1] we get

V (u) =
1
β1

ln
(

exp(β1V (m1))+m1 −u
)
.

Therefore, if qβ2 − pβ1 = 0, then the optimal expected reward in Problem A is equal to
A=V (0) = 1

β1
ln(exp(β1V (m1))+m1).

Now, assume that qβ2 − pβ1 = 0. Then

g(u,V (u)) =

⎧⎨⎩
F1(V (u)), 0 ≤ u < m1,
β1V (u)

q F̄2
(V (u)

p

)
, m1 ≤ u < m2,

F2(V (u)), m2 ≤ u <U

and

H(u,V (u)) =

⎧⎪⎨⎪⎩
H1(V (u)), 0 ≤ u < m1,
β1V (u)p

q H2
(V (u)

p

)
+ p

β2
F̄1
(V (u)

q

)
+qH1

(V (u)
q

)
, m1 ≤ u < m2,

H2(V (u)), m2 ≤ u <U.

Hence, if qβ2 − pβ1 = 0, then the function V (u) satisfies:

dV (u)
du

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 1
β1

exp(−β1V (u)), 0 < u < m1,

V (u)− β1V (u)
q

(
2V (u)+ p

β2

)
F̄2
(V (u)

p

)
−
(

p
β2
+ q

β1
+V (u)

)
F̄1
(V (u)

q

)
, m1 < u < m2,

− 1
β2

exp(−β2V (u)), m2 < u <U.

The above differential equations can be solved in the same way as equation (22). Note that
A=V (0).

Now, let us find the optimal expected reward in Problem B. Note that UM = m2. From
Theorem 16(i), we get that in each of the intervals (0,m1) and (m1,m2) the function V1(·,1)
satisfies

dV1(u,1)
du

= − 1
β1

exp(−β1V1(u,1)). (23)

Solving the above differential equation with boundary condition
V1(m2,1) =V2(m2) =

1
β2

ln(1+U −m2) we get that for u ∈ (m1,m2)

V1(u,1) =
1
β1

ln
(
(1+U −m2)

β1
β2 +m2 −u

)
.
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Hence, using continuity of the function F̄M(u)V1(u,1)+FM(u)V2(u), we obtain the following
boundary condition:

lim
u→m−

1

V1(u,1) =
q
β1

ln
(
(1+U −m2)

β1
β2 +m2 −m1

)
+

p
β2

ln(1+U −m1).

Solving (23) with the above boundary condition we get for u ∈ (0,m1)

V1(u,1) =
1
β1

ln
(

m1 +
(
(1+U −m2)

β1
β2 +m2 −m1

)q
(1+U −m1)

pβ1
β2 −u

)
.

Hence, using Theorem 14 and the fact that FM(0) = 0, we get that the optimal expected
reward in Problem B is equal to

B=V1(0,1) =
1
β1

ln
(

m1 +
(
(1+U −m2)

β1
β2 +m2 −m1

)q
(1+U −m1)

pβ1
β2

)
.

The numerical comparison of the optimal expected rewards in Problems A and B is pre-
sented in Table 1. We assume that p = 1

2 in the comparison.
Table 1

Numerical results for Example 17

no. β1 β2 m1 m2 μ1 μ2 Var(M) A B
B−A

A
·100%

1 10−1 1 1 9 10 1 16 14.2747 14.7692 3.46 %
2 10−1 1 2 8 10 1 9 15.7129 16.0490 2.14 %
3 10−1 1 3 7 10 1 4 16.8655 17.0796 1.27 %
4 10−1 1 4 6 10 1 1 17.7459 17.8571 0.63%
5 1 1 1 9 1 1 16 1.2883 2.3979 86.14 %
6 1 1 2 8 1 1 9 1.5318 2.3979 56.54%
7 1 1 3 7 1 1 4 1.7279 2.3979 38.78%
8 1 1 4 6 1 1 1 1.9024 2.3979 26.04%
9 1 1 4.99 5.01 1 1 10−4 2.3821 2.3979 0.66%
10 1 10−1 0.1 9.9 1 10 21.34 8.6942 9.6407 10.89 %
11 1 10−1 1 9 1 10 16 12.7818 14.9826 17.22%
12 1 10−1 2 8 1 10 9 13.7577 16.4792 19.78%
13 1 10−1 3 7 1 10 4 15.0886 17.3287 14.85%
14 1 10−1 4 6 1 10 1 16.5202 17.7767 7.61%

Let us analyse the numerical results presented in Table 1. Note that in the table we chose
m1 and m2 in such a way that E(M) = 5 = 1

2U. First of all, note that the optimal expected
rewards in Problems A and B are different and A < B even for β1 = β2 = 1 (lines 5-9). It
means that the optimal expected reward in Problem A is smaller than the optimal expected
reward in Problem B (for considered parameters), even if the distribution of offers does not
change at the disorder time. Moreover, for β1 = β2 = 1 we get that the optimal expected
reward in the original Elfving problem (see (21)) is equal to V2(0) = ln(11) ≈ 2.3979 = B,
so it is also equal to the optimal expected reward in Problem B, while A<V2(0). Now look at
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the last column in the lines 10-14. We can see that there is no relation between the variance
and percentage difference between the optimal expected rewards in both problems. We see
that the optimal expected rewards in Problem A in lines 1-4 are greater than the optimal
expected rewards in Problem A in lines 11-14 for the same m1 and m2. This observation
suggests that in Problem A the case when we obtain offers with larger expectation (μ1 = 10)
before the disorder time and offers with smaller expectation (μ2 = 1) after the disorder time
is more profitable (gives larger optimal expected reward) than the case when we obtain
offers with expectation μ1 = 1 before the disorder time and μ2 = 10 after the disorder time.
Such a situation does not take place in Problem B (see lines 3 and 13). Finally, note that
the difference in the optimal expected rewards in Problems A and B can be as big as 86%
(see line 5), which shows that in general we should not approximate one problem by the
other. Therefore, it is important to have the explicit solution of each of these problems.
Such a substantial difference in the optimal expected rewards also shows how important the
information of the disorder time is and how this information can change the optimal expected
reward, for example from selling a commodity.

Example 18. Let Y (1)
1 be as in Example 17. Moreover, let M has the exponential distribution

with parameter δ > 0. Hence, U = UM and a = 0. First, note that for u ≥ 0 we have
β2r1(u)−β1r2(u) = 0 if u = 1

δ ln(β1+β2
β1

) or u ≥ U. Note that 1
δ ln(β1+β2

β1
)> 0. Hence, using

identity (4) for u ∈ [0,min{ 1
δ ln(β1+β2

β1
),U}) and u ∈ (min{ 1

δ ln(β1+β2
β1

),U},U) we obtain

g(u,V (u)) = 1− exp
(
−β1V (u)

r1(u)

)
− β1r2(u)

β2r1(u)−β1r2(u)

(
exp
(
− β1V (u)

r1(u)

)
− exp

(
− β2V (u)

r2(u)

))
and

H(u,V (u)) =

(
r2(u)

β2
+V (u)+

r1(u)
β1

+
(

V (u)+
r2(u)

β2

) β1r2(u)
β2r1(u)−β1r2(u)

)
exp
(
− β1V (u)

r1(u)

)
−
(

V (u)+
r2(u)

β2

) β1r2(u)
β2r1(u)−β1r2(u)

exp
(
− β2V (u)

r2(u)

)
.

Therefore, using Theorem 12 we get that the function V (u) for u ∈ (0,min{ 1
δ ln(β1+β2

β1
),U})

and u ∈ (min{ 1
δ ln(β1+β2

β1
),U},U) satisfies

dV (u)
du

= −
(FM(u)

β2
+

F̄M(u)
β1

+
β1(FM(u))2

β2(β2F̄M(u)−β1FM(u))

)
exp
(
− β1V (u)

F̄M(u)

)
+

β1(FM(u))2

β2(β2F̄M(u)−β1FM(u))
exp
(
− β2V (u)

FM(u)

)
. (24)
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If 1
δ ln(β1+β2

β1
) ≥ U we solve the above differential equation in the interval (0,U) with the

boundary condition V (U) = 0. Otherwise, we solve the above differential equation in the
interval ( 1

δ ln(β1+β2
β1

),U) with the boundary condition V (U) = 0. Next, we use continuity of

V (u) at u = 1
δ ln(β1+β2

β1
) to find the solution of (24) for u ∈ [0, 1

δ ln(β1+β2
β1

)).

Now, we present the solution of Problem B. Note that using (19) we get that for u ∈ (0,U),
V1(u,1) satisfies

dV1(u,1)
du

= − 1
β1

exp(−β1V1(u,1))+δV1(u,1)−
δ
β2

ln(1+U −u).

We solve the above differential equation with the boundary condition given in (20). In our
example, the boundary condition has the form: V1(U,1) = 0. Moreover, note that FM(0) = 0,
hence the optimal expected reward in Problem B is equal to B=V1(0,1).

The comparison of the optimal expected rewards in both problems is presented in Table 2.
In the table, we chose δ such that E(M) is equal to 1, 5 and 9.

Table 2
The numerical results for Example 18

β1 β2 δ A B
B−A

A
·100%

10−1 1 1 6.6320 7.2001 8.57%
10−1 1 5−1 13.6176 14.1051 3.58%
10−1 1 9−1 16.5869 16.9666 2.29%

1 1 1 2.2817 2.3979 5.09%
1 1 5−1 2.0571 2.3979 16.57 %
1 1 9−1 2.0806 2.3979 15.25%
1 10−1 1 22.0662 22.9653 4.07%
1 10−1 5−1 14.7837 16.8374 13.89%
1 10−1 9−1 10.7414 12.5211 16.57%

The expected optimal rewards in both models are different, even for β1 = β2. More pre-
cisely, in the considered cases we have A < B. However, the difference is not as big as in
Example 17.

Example 19. Random starting time. Let P(Y (1)
1 = 0) = 1, β2 = 1. Additionally, assume that

M has the exponential distribution with parameter δ > 0. Hence, a = 0 and UM =U. Using
(4) we get that for u ∈ [0,U)

g(u,V (u)) = F2

(V (u)
r2(u)

)
= 1− exp

(
− V (u)

1− exp(−δu)

)
.

Moreover, from Lemma 8 we obtain that for u ∈ [0,U)

H(u,V (u)) = r2(u)H2

(V (u)
r2(u)

)
= (1− exp(−δu))

(
1+

V (u)
1− exp(−δu)

)
exp
(
− V (u)

1− exp(−δu)

)
.
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From (15) it follows that for u ∈ (0,U) the function V (u) satisfies the differential equation

d
du

V (u) = −(1− exp(−δu))exp
(
− V (u)

1− exp(−δu)

)
with the boundary condition V (U) = 0. The differential equation should be solved numeri-
cally. Let us recall that the optimal expected reward in Problem A is equal to A=V (0).

To find the optimal expected reward in Problem B note that using Theorem 15 we obtain

f (2)u (v) =
1+U −u− v

1+U −u
.

Hence,

f0(v) =
1+U − v

1+U
+(1+U − v)

∫ v

0

exp(−δ t)
(1+U − t)2 dt.

Therefore,

B=

U∫
0

(1+ ln(1+U − v))
( 1

1+U
+

v∫
0

exp(−δ t)
(1+U − t)2 dt

)
dv

−
U∫

0

exp(−δv)
1+U − v

(1+ ln(1+U − v))dv.

The numerical comparison of the optimal expected rewards in Problems A and B is pre-
sented in Table 3.

Table 3
Numerical results for Example 19

δ A B
B−A

A
·100%

10 2.3795 2.3887 0.39%
1 2.2037 2.2965 4.21%

5−1 1.4543 1.6717 14.95 %
10−1 0.9615 1.1366 18.17%
10−2 0.1298 0.1574 21.32%
10−6 0.000013 0.000016 21.77%

Note that the optimal expected rewards in both problems increase as δ increases (equiv-
alently E(M) decreases). Moreover, the larger δ , the smaller the percentage difference be-
tween the optimal expected rewards. In all considered cases we have A< B.
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1. INTRODUCTION

Ordered algebras such as Boolean algebras, Heyting algebras, lattice-ordered groups and
MV-algebras played a decisive role in logic, both as the models of theories of first (or higher)
order logic, as well as the algebraic semantics for the plethora of non-classical logics emerg-
ing in the twentieth century from linguistics, philosophy, mathematics, and computer sci-
ence. For example, lattice-ordered groups play a fundamental role in the study of algebras of
logic, while MV-algebras are the algebraic counterparts of the infinite-valued Łukasiewicz
propositional logic.

Another important and widely investigated class is given by quantales [25, 26] - complete
semilattices with an additional associative multiplication that distributes over arbitrary joins.
They were introduced in the 1980s as a non-commutative generalization of locales, to cap-
ture the non-commutative logic arising in quantum mechanics. Quantales are examples of
semilattice ordered algebras (SLO algebras, for short) which we discuss in this paper.

In the series of papers [17]–[21] we investigated SLO algebras (A,Ω,≤), where (A,≤) is
a (join) semilattice, (A,Ω) is an algebra (where Ω is a set of operations of any finitary positive
arity, and, moreover, Ω is not necessarily finite) and each operation from Ω distributes over



Agata Pilitowska, Anna Zamojska-Dzienio

the join. Obviously, examples are provided not only by already mentioned quantales or well
known additively idempotent semirings [3, 7, 27]; SLO algebras are much more general
structures. The basic role in the theory was played by extended power algebras of non-
empty subsets and extended algebras of (non-empty) subalgebras. The main aim of the
present paper is to describe the properties of SLO algebras with constants, i.e. we allow
operations of the arity equal to zero (or in the case of power constructions we allow the
empty subset and the empty subalgebra). We study the relations between the SLO algebras
with the signatures including and excluding constants. Our motivation is very natural and
came from applications in logic, where constants 0 and 1 play a significant role. Similar
research in case of commutative doubly-idempotent semirings has been recently described in
[1, 3].

The paper is organized as follows. In Section 2 we provide basic definitions, results and
examples concerning semilattice ordered algebras with and without various types of con-
stants in the signature. In Section 3 we investigate identities satisfied by SLO algebras and
we present a necessary and sufficient condition for a SLO algebra to satisfy some non-linear
identity. In Section 4 we describe the free objects in an arbitrary variety S of semilattice
ordered algebras (with various types of constants in the signature) and in the quasivariety
of Ω-subreducts of SLO algebras in S . In Section 5 we apply the results to some particular
idempotent varieties of SLO algebras.

2. SLO ALGEBRAS

Let � be the variety of all algebras (A,Ω) of a (fixed) finitary type τ : Ω → N
+ and let

V ⊆ � be a subvariety of �. In [20] we introduced the following definition of a semilattice
ordered algebra.

Definition 1. An algebra (A,Ω,+) is called a semilattice ordered V-algebra (or briefly
semilattice ordered algebra) if (A,Ω) belongs to a variety V , (A,+) is a (join) semilattice
(with semilattice order ≤, i.e. x ≤ y ⇔ x+y= y) and the operations from the set Ω distribute
over the operation +, i.e. for each n-ary operation ω ∈ Ω, and x1, . . . ,xi,yi, . . . ,xn ∈ A

ω(x1, . . . ,xi + yi, . . . ,xn) = ω(x1, . . . ,xi, . . . ,xn)+ω(x1, . . . ,yi, . . . ,xn)

for any 1 ≤ i ≤ n.

Definition 1 can be also formulated for semilattice ordered algebras with constants. Such
constants may be of two types. The first one may consist of some special elements in the
semilattice (A,+) and the second one may refer to the algebra (A,Ω) ∈ V . In particular,
we can consider semilattice algebras with neutral element with respect to the operation + or
with unit elements with respect to operations in Ω.
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Definition 2. An algebra (A,Ω,+,0) is called a 0-semilattice ordered V-algebra if
(A,Ω,+) is a semilattice ordered V-algebra, (A,+,0) is a semilattice with the least element
0 and for each ω ∈ Ω and x1, . . . ,xi, . . . ,xn ∈ A

ω(x1, . . . ,xi, . . . ,xn) = 0

whenever there is 1 ≤ i ≤ n such that xi = 0.

Definition 3. Let A be a non-empty set and let n be a positive integer. An element α ∈ A is
called a unit for an n-ary operation ω : An → A if for every x ∈ A

ω(x,α, . . . ,α) = ω(α,x,α, . . . ,α) = . . .= ω(α, . . . ,α,x) = x.

We say that α is a unit for an algebra (A,Ω) if it is a unit for each operation ω ∈ Ω.

Remark 4. Let (A,Ω) be an algebra. Denote by E the set of all units for (A,Ω). If there is a
binary operation in Ω then |E| ≤ 1, but in general 0 ≤ |E| ≤ |A|. In this paper we assume that
whenever a unit exists it is unique, i.e. we consider algebras (A,Ω,α) of a (fixed) finitary
type τ : Ω∪{α} → N with the unit α ∈ E . We denote this unique unit by 1.

Let �1 be the variety of all algebras (A,Ω,1) of a (fixed) finitary type τ : Ω ∪{1} → N

with the unit 1 and such that (A,Ω) ∈ � and let V1 ⊆ �1 be a subvariety of �1.

Definition 5. An algebra (A,Ω,+,1) is a semilattice ordered V1-algebra with a unit 1 if
(A,Ω,+) is a semilattice ordered V-algebra and 1 is a unit for (A,Ω).

Note that we do not assume that 1 is the greatest element in the semilattice (A,+).

Definition 6. An algebra (A,Ω,+,0,1) is a 0-semilattice ordered V1-algebra with a unit if
(A,Ω,+,0) is a 0-semilattice ordered V-algebra and 1 is a unit for (A,Ω).

A direct consequence of distributivity is that in a semilattice ordered algebra (A,Ω,+) for
each n-ary operation ω ∈ Ω and xi j ∈ A for 1 ≤ i ≤ n, 1 ≤ j ≤ r we have

ω(x11, . . . ,xn1)+ . . .+ω(x1r, . . . ,xnr) (1)
≤ ω(x11 + . . .+ x1r, . . . ,xn1 + . . .+ xnr).

It is also easy to notice that in semilattice ordered algebras all Ω-operations are monotone
with respect to the semilattice order ≤. Namely if xi ≤ yi ∈ A for each 1 ≤ i ≤ n, then

ω(x1, . . . ,xn) ≤ ω(y1, . . . ,yn). (2)

This means that such algebras form a subclass of a class of ordered algebras in the sense
of [4] (see also [5] and [2]). Basic examples are given by additively idempotent semirings,
distributive lattices, semilattice ordered semigroups [6], semilattice ordered idempotent, en-
tropic algebras (modals) [17], extended power algebras [20] or semilattice modes [13].

We start with a few natural examples of semilattice ordered algebras.
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Example 7. Semilattice ordered semigroups. An algebra (A, ·,+), where (A, ·) is
a semigroup, (A,+) is a semilattice and for any a,b,c ∈ A, a · (b+ c) = a · b+ a · c and
(a+b) · c = a · c+b · c is a semilattice ordered semigroup. In particular, semirings with an
idempotent additive reduct ([27], [16]), dissemilattices (called also ·-distributive bisemilat-
tices in [15]) - algebras (M, ·,+) with two semilattice structures (M, ·) and (M,+) in which
the operation · distributes over the operation +, and distributive lattices are semilattice or-
dered SG-algebras, where SG denotes the variety of all semigroups.

Another important class here is given by quantales [25, 26], i.e. semilattice ordered
semigroups (A, ·,+), where (A,+) is a complete semilattice and the operation · distributes
over arbitrary joins.

Example 8. Extended power algebras of algebras. [20] For a given set A denote by PA
the family of all subsets of A and by P>0A the family of all non-empty subsets of A. For any
0 = n-ary operation ω : An → A we define the complex operation ω : (PA)n → PA in the
following way:

ω(A1, . . . ,An) := {ω(a1, . . . ,an) | ai ∈ Ai}, (3)

where /0 = A1, . . . ,An ⊆ A and
ω(A1, . . . ,An) := /0,

if there is Ai = /0 for some 1 ≤ i ≤ n.

The set PA also carries a join semilattice structure under the set-theoretical union ∪. In
[11] B. Jónsson and A. Tarski proved that complex operations distribute over the union ∪.
Hence, for any algebra (A,Ω) ∈ �, the extended power algebra (P>0A,Ω,∪) is a semilat-
tice ordered �-algebra and the /0-extended power algebra (PA,Ω,∪, /0) is a 0-semilattice
ordered �-algebra.

Notice that the algebras (P<ωA,Ω,∪, /0) and (P<ω
>0 A,Ω,∪) of all finite (non-empty) sub-

sets of A are subalgebras of (PA,Ω,∪, /0) and (P>0A,Ω,∪), respectively. Moreover, the
power algebra of all subsets of A can also be viewed as the Boolean algebra
(PA,∪,∩,−,A, /0,Ω) with operators Ω. This concept was introduced and studied by B.
Jónsson and A. Tarski [11, 12].

Example 9. Extended power algebras of algebras with a unit. Let (A,Ω,1) be an algebra
with the unit 1 ∈ A. It is clear that for any non-empty subset X ⊆ A and n-ary operation
ω ∈ Ω

ω({1}, . . . , X︸︷︷︸
i

, . . . ,{1}) = {ω(1, . . . ,xi, . . . ,1) | xi ∈ X} = {xi | xi ∈ X} = X .

Then the algebra (P>0A,Ω,∪,{1}) is a semilattice ordered algebra with the unit {1} and
the algebra (PA,Ω,∪, /0,{1}) is a 0-semilattice ordered algebra with the unit {1}.

For a semigroup (A, ·) its /0-extended power algebra (PA, ·,∪, /0) is a basic example of
a quantale. Similarly, the /0-extended power algebra with a unit (PA, ·,∪, /0,{1}) for a monoid
(A, ·,1) is a unital quantale.
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An algebra (A,Ω) is idempotent if each singleton is a subalgebra, i.e. for every n-ary
operation ω ∈ Ω and x ∈ A the following identity is satisfied:

ω(x, . . . ,x) = x.

A variety V of algebras is called idempotent if every algebra in V is idempotent.

An algebra (A,Ω) is entropic if any two of its operations commute. This property may
also be expressed by means of identities: for every m-ary ω ∈ Ω and n-ary ϕ ∈ Ω operations
and x11, . . . ,xn1, . . . ,x1m, . . . ,xnm ∈ A

ω(ϕ(x11, . . . ,xn1), . . . ,ϕ(x1m, . . . ,xnm)) =

ϕ(ω(x11, . . . ,x1m), . . . ,ω(xn1, . . . ,xnm)).

Remark 10. If there is a unit 1 in an entropic algebra (A,Ω) then the algebra is symmetric,
i.e. for every n-ary operation ω ∈ Ω and x1, . . . ,xn ∈ A the following identity holds:

ω(x1, . . . ,xn) = ω(xπ(1), . . . ,xπ(n))

for each permutation π of the set {1, . . . ,n}.

Example 11. Modals. A modal (M,Ω,+) is a semilattice ordered algebra in which the
algebra (M,Ω) is idempotent and entropic. Examples of modals include semilattice ordered
semilattices (dissemilattices) and the algebra (R, I0,max) defined on the set of real numbers,
where I0 is the set of the binary operations:

p : R×R → R, (x,y) �→ (1− p)x+ py,

for each p ∈ (0,1) ⊂ R.

Idempotent and entropic algebras (called modes) and also modals were introduced and
investigated in detail by A. Romanowska and J.D.H. Smith ([22]-[24]). In particular, they
showed that for a given idempotent and entropic algebra (M,Ω), the sets S>0(M) of non-
empty subalgebras and P>0(M) of finitely generated non-empty subalgebras under the com-
plex operations ω ∈ Ω and ordered by set-theoretic inclusion are modals. In the case we
allow empty subalgebras, one obtains 0-semilattice ordered modes: (S(M),Ω,∪, /0) and
(P(M),Ω,∪, /0).

If a modal (M,Ω,+) is entropic, then it is an example of a semilattice mode. Semilattice
modes were described by K. Kearnes in [13].

3. IDENTITIES IN SLO ALGEBRAS

As we will see in Section 4 the extended power algebras of algebras and their Ω-reducts
play a special role in the context of semilattice ordered algebras. Let us recall some funda-
mental results referring to such algebras.
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Let V ⊆ � be a variety of algebras and let

VΣ := HSP({(PA,Ω) | (A,Ω) ∈ V}) and

VΣ>0 := HSP({(P>0A,Ω) | (A,Ω) ∈ V}).
Let us consider their subvarieties

VΣ<ω := HSP({(P<ωA,Ω) | (A,Ω) ∈ V}) and

VΣ<ω
>0 := HSP({(P<ω

>0 A,Ω) | (A,Ω) ∈ V})
of power algebras of finite subsets.

We call a term t of the language of a variety V linear, if every variable occurs in t at most
once. An identity t ≈ u is called linear, if both terms t and u are linear.

Note that the definition (3) of a complex operation extends to each linear derived operation
t:

t(A1, . . . ,An) := {t(a1, . . . ,an) | ai ∈ Ai}. (4)

Each non-linear term t can be obtained from a linear one t∗ by identification of some
variables. Let t∗(x11, . . . ,x1k1 , . . . ,xm1, . . . ,xmkm) be a linear term such that

t(x1, . . . ,xm) = t∗(x1, . . . ,x1︸ ︷︷ ︸
k1−times

, . . . ,xm, . . . ,xm︸ ︷︷ ︸
km−times

).

Then for any subsets A1, . . . ,Am

{t(a1, . . . ,am) | ai ∈ Ai} ⊆ t(A1, . . . ,Am)

= {t∗(a11, . . . ,a1k1 , . . . ,am1, . . . ,amkm) | ai j ∈ Ai}
= t∗(A1, . . . ,A1,︸ ︷︷ ︸

k1−times

. . . ,Am, . . . ,Am︸ ︷︷ ︸
km−times

).

G. Grätzer and H. Lakser proved in [8] that for any subvariety V ⊆� the following result
holds.

Theorem 12 ([8, Theorem 1]). Let V be a variety of algebras. The variety VΣ>0 satisfies
precisely those identities which can be obtained from the linear identities true in V through
identification of variables.

Corollary 13 ([19]). Let V be a variety of algebras. The varieties VΣ>0 and VΣ<ω
>0 coincide.

An identity t ≈ u is called regular if the set of variable symbols occurring in t equals the
set of variable symbols occurring in u. The following results are analogues to the ones above
formulated for varieties of power algebras including the empty set.

Theorem 14 ([8, Theorem 2]). Let V be a variety of algebras. The variety VΣ satisfies
precisely those regular identities which can be obtained from the linear identities true in V
through identification of variables.
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Corollary 15. Let V be a variety of algebras. The varieties VΣ and VΣ<ω coincide.

Corollary 16 ([8, Corollary 2],[21, Theorem 4.6]). Let V be a variety of algebras. Then
V = VΣ<ω

>0 if and only if V is defined by a set of linear identities and V = VΣ<ω if and only
if V is defined by a set of linear regular identities.

Let (A,Γ) be an algebra of a given type τ : Γ → N. Denote by BΓ a set of derived (or
term) operations of Γ and let Ω ⊆ BΓ. An algebra (A,Ω) is said to be a reduct (Ω-reduct)
of the algebra (A,Γ). A subalgebra of a reduct of (A,Γ) is called a subreduct.

Let (A,Ω,+) be a semilattice ordered algebra generated by a set X ⊆ A. Denote by
(〈X〉Ω,Ω) the subalgebra of the Ω-reduct (A,Ω) generated by the set X . The algebra
(〈X〉Ω,Ω) contains all elements from (A,Ω,+) obtained as results of derived (or term) op-
erations from Ω on the set X . We will call it the full Ω-algebra subreduct (of a semilattice
ordered algebra (A,Ω,+)) relative to X .

An element r ∈ A is said to be in disjunctive form if it is a join of a finite number of
elements from their full Ω-subreduct 〈X〉Ω.

The following theorem shows that each element in a semilattice ordered algebra may be
expressed in such form.

Lemma 17 (Disjunctive Form Lemma). Let (A,Ω,+) be a semilattice ordered algebra gen-
erated by a set X ⊆ A. For each r ∈ A, there exist r1, . . . ,rp ∈ 〈X〉Ω such that

r = r1 + . . .+ rp.

Proof. The proof is done by induction on the minimal number m of occurrences of the semi-
lattice operation + in the expression of r as a semilattice ordered algebra word in the alpha-
bet X .

Consider r = r1 with r1 ∈ 〈X〉Ω. Hence, the result holds for m = 0.

Now suppose that the hypothesis is established for m > 0 and let r ∈ A be an element in
which the semilattice operation + occurs m+ 1 times. Let r = r1 + r2, for some r1,r2 ∈ A.
By induction hypothesis there are r11, . . . ,r1k,r21, . . . ,r2n ∈ 〈X〉Ω such that

r = r1 + r2 = r11 + . . .+ r1k + r21 + . . .+ r2n.

Otherwise, r = ω(r1, . . . ,rk + sk, . . . ,rn) for some ω ∈ Ω and r1, . . . ,rk, . . . ,rn,sk ∈ A. Then,
by distributivity we have

r = ω(r1, . . . ,rk + sk, . . . ,rn) = ω(r1, . . . ,rk, . . . ,rn)+ω(r1, . . . ,sk, . . . ,rn).

Because ω(r1, . . . ,rk, . . . ,rn),ω(r1, . . . ,sk, . . . ,rn) ∈ A, this completes the proof.

Corollary 18. Let (A,Ω,+) be a semilattice ordered algebra generated by a set X ⊆ A.
There is a set Y ⊆ A of generators of the semilattice (A,+) such that Y ⊆ 〈X〉Ω.
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Let SV denote the class of all semilattice ordered algebras such that for each
(A,Ω,+) ∈ SV there exists a set of generators such that their full Ω-subreduct lies in V .

Theorem 19. Let V be a variety of Ω-algebras satisfying an identity t ≈ u for some 0 = n-ary
terms and let S ⊆ SV be a variety of semilattice ordered algebras (A,Ω,+) such that the
word operation t : An → A distributes over the operation +.

Then the identity t ≈ u is satisfied in S if and only if the word operation u : An → A
distributes over the operation +.

Proof. Let (A,Ω,+) ∈ S ⊆ SV and let the word operation t : An → A distribute over the
operation +.

Because the variety S is, by assumption, included in SV , there exists a set X of generators
of (A,Ω,+) such that its full Ω-algebra subreduct relative to X belongs to the variety V .
Hence, the identity t ≈ u is also true in (〈X〉Ω,Ω).

First, suppose that the word operation u : An → A distributes over the operation + and let
r1, . . . ,rn ∈ A. By the Disjunction Form Lemma 17 there exist r11, . . . ,r1k1 , . . . ,rn1, . . . ,rnkn

∈ 〈X〉Ω such that for each 1 ≤ i ≤ n, ri = ri1+ . . .+ riki . Then, by distributivity of operations
t : An → A and u : An → A we obtain

t(r1, . . . ,rn) = t(r11 + . . .+ r1k1 , . . . ,rn1 + . . .+ rnkn) =

∑
1≤i≤n

ai∈{ri1,...,riki
}

t(a1, . . . ,an) = ∑
1≤i≤n

ai∈{ri1,...,riki
}

u(a1, . . . ,an) =

u(r11 + . . .+ r1k1 , . . . ,rn1 + . . .+ rnkn) = u(r1, . . . ,rn).

The converse implication is obvious.

Example 20. Let (A,Ω,+) be a semilattice ordered algebra and let ω ∈ Ω be an n-ary
operation. The unary operation t(x) := ω(x, . . . ,x) : A → A distributes over the operation +
if and only if for any x,y ∈ A

t(x)+ t(y) = ∑
xi∈{x,y}

ω(x1, . . . ,xn).

In particular, if ω ∈ Ω is a binary idempotent operation then the operation
t(x) = ω(x,x) : A → A distributes over the operation + if and only if for any x,y ∈ A

x+ y = x+ y+ω(x,y)+ω(y,x).

Lemma 21. Let (A,Ω,+) be a semilattice ordered algebra and let t be an 0 = n-ary linear
Ω-term. Then the word operation t : An → A distributes over the operation +.

Proof. The proof is done by induction on the minimal number m of occurrences of (symbols
of) the basic Ω-operations in the corresponding linear Ω-term.
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By definition of a semilattice ordered algebra, the lemma is certainly true for m = 1. Now
suppose that the hypothesis is established for m > 1. Let

t(x11, . . . ,xkpk) = ω(ν1(x11, . . . ,x1p1), . . . ,νk(xk1, . . . ,xkpk))

be a linear Ω-term, for some ω ∈ Ω, different variable symbols x11, . . . ,x1p1 , . . . ,xk1, . . . ,xkpk

and linear Ω-words ν1, . . . ,νk, in which the basic Ω-operations occur m+1 times.

By the induction hypothesis, the Ω-word operations νi : Api → A, for 1 ≤ i ≤ k, distribute
over the operation +. This implies that for any x11, . . . ,x1p1 , . . . ,xi1, . . . ,xi j,yi j, . . . ,xipi ,
. . . ,xk1, . . . ,xkpk ∈ A,

t(x11, . . . ,xi j + yi j, . . . ,xkpk)

= ω(ν1(x11, . . . ,x1p1), . . . ,νi(xi1, . . . ,xi j + yi j, . . . ,xipi), . . . ,νk(xk1, . . . ,xkpk))

= ω(ν1(x11, . . . ,x1p1), . . . ,νi(xi1, . . . ,xi j, . . . ,xipi)

+νi(xi1, . . . ,yi j, . . . ,xipi), . . . ,νk(xk1, . . . ,xkpk))

= ω(ν1(x11, . . . ,x1p1), . . . ,νi(xi1, . . . ,xi j, . . . ,xipi), . . . ,νk(xk1, . . . ,xkpk))

+ω(ν1(x11, . . . ,x1p1), . . . ,νi(xi1, . . . ,yi j, . . . ,xipi), . . . ,νk(xk1, . . . ,xkpk))

= t(x11, . . . ,xi j, . . . ,xkpk)+ t(x11, . . . ,yi j, . . . ,xkpk),

which completes the proof.

Corollary 22. Let V be a variety of Ω-algebras satisfying an identity t ≈ u for some 0 = n-
ary terms, where t is linear. The identity t ≈ u is true in a variety S ⊆ SV of semilattice
ordered algebras if and only if the word operation u : An → A distributes over the operation
+.

Corollary 23. A variety S ⊆SV of semilattice ordered algebras satisfies each linear identity
true in V .

Corollary 24. Let V be a variety of Ω-algebras satisfying an identity ω(x, . . . ,x) = x, for
ω ∈ Ω. The identity ω(x, . . . ,x) = x is true in a variety S ⊆ SV of semilattice ordered
algebras if and only if the following identity

x+ y = ∑
xi∈{x,y}

ω(x1, . . . ,xn)

is true in S .

Let ∪VΣ<ω
>0 denote the variety of semilattice ordered algebras generated by extended

power algebras of finite non-empty subsets of algebras from V , i.e.,

∪VΣ<ω
>0 := HSP({(P<ω

>0 A,Ω,∪) | (A,Ω) ∈ V}).

Theorem 25. Let V be a variety of Ω-algebras. The variety VΣ<ω
>0 is locally finite if and

only if the variety ∪VΣ<ω
>0 is locally finite.
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Proof. Let (C,Ω,∪)∈∪ VΣ<ω
>0 be the algebra generated by a finite set X ⊆C. By Disjunctive

Form Lemma 17, for each a ∈ C, there exist a1, . . . ,ap ∈ 〈X〉Ω such that

a = a1 ∪ . . .∪ap. (5)

If the variety VΣ<ω
>0 is locally finite, then the algebra 〈X〉Ω ∈ VΣ<ω

>0 is finite. Hence, there
are only finitely many elements of the form (5). Consequently, the algebra (C,Ω,∪) is finite.

Let (F∪VΣ<ω
>0
(X),Ω,∪) be the free algebra in the variety ∪VΣ<ω

>0 generated by a set X . It
is known that the free algebra over X in the variety generated by Ω-subreducts of algebras
in ∪VΣ<ω

>0 is isomorphic to the Ω-subreduct (〈X〉,Ω), generated by X, of the free algebra
(F∪VΣ<ω

>0
(X),Ω,∪). (See e.g. [17, Theorem 3.9]). The free algebra (FVΣ<ω

>0
(X),Ω) is then

a homomorphic image of (〈X〉Ω,Ω). Consequently, the variety VΣ<ω
>0 is locally finite if the

variety ∪VΣ<ω
>0 is locally finite.

Note that the same is true also for varieties generated by power algebras of all finite
subsets (i.e. including the empty set).

4. FREE SLO ALGEBRAS WITH CONSTANTS

Let (FV(X),Ω) be the free algebra over a set X in the variety V ⊆ � and (FV1(X),Ω)
be the free algebra over a set X in the variety V1 ⊆ �1. Let SV denote the variety of all
semilattice ordered V-algebras, S0

V denote the variety of all 0-semilattice ordered V-algebras,
SV1 denote the variety of all semilattice ordered V1-algebras and S0

V1
denote the variety of all

0-semilattice ordered V1-algebras.

Theorem 26 (Universality Property for Semilattice Ordered Algebras). [20] Let X be an
arbitrary set and (A,Ω,+) ∈ SV . Each mapping h : X → A can be extended to a unique
homomorphism h : (P<ω

>0 FV(X),Ω,∪) → (A,Ω,+) such that h|X = h.

Corollary 27 (Universality Property for 0-Semilattice Ordered Algebras). Let X be an ar-
bitrary set and (A,Ω,+,0) ∈ S0

V . Each mapping h : X → A can be extended to a unique

homomorphism h : (P<ωFV(X),Ω,∪, /0) → (A,Ω,+,0) such that h|X = h.

Proof. Let (A,Ω,+,0)∈S0
V . Since (A,Ω)∈V then any mapping h : X → A may be uniquely

extended to an Ω-homomorphism h : (FV(X),Ω) → (A,Ω).

Let us define the mapping h : (P<ωFV(X),Ω,∪, /0) → (A,Ω,+,0) by

h(T ) = ∑
t∈T

h(t),
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if T is a non-empty finite subset of FV(X) and

h( /0) = 0.

By Theorem 26 the mapping h|P<ω
>0 FV (X) is the unique {Ω,∪}-homomorphism such that

h|X = h. But obviously if Ti = /0 for some i, we also have:

h(ω(T1, . . . , /0, . . . ,Tn)) = h( /0) = 0 = ω(h(T1), . . . ,0, . . . ,h(Tn))

= ω(h(T1), . . . ,h( /0), . . . ,h(Tn)).

Moreover, for T1 = /0

h( /0∪T2) = h(T2) = 0+h(T2) = h( /0)+h(T2),

which shows that the mapping h|P<ω FV (X) is an {Ω,∪, /0}-homomorphism. This completes
the proof.

Corollary 28 (Universality Property for Semilattice Ordered Algebras with a unit). Let X be
an arbitrary set and (A,Ω,+,1)∈SV1 . Each mapping h : X → A can be extended to a unique
homomorphism h : (P<ω

>0 FV1(X),Ω,∪,{1}) → (A,Ω,+,1) such that h|X = h.

Proof. Let (A,Ω,1) be a V1-algebra with the unit 1 ∈ A. Then for the {Ω,1}-homomorphism
h : (FV1(X),Ω,1) → (A,Ω,1) which is an extension of a mapping h : X → A one has that
h(1) = 1. Further, by Theorem 26, the mapping h : (P<ω

>0 FV1(X),Ω,∪) → (A,Ω,+),

h(T ) = ∑
t∈T

h(t)

for a non-empty finite subset T of FV1(X), is a homomorphism such that h|X = h. In partic-
ular, for T = {1}

h({1}) = h(1) = 1.

Directly from Corollaries 27-28 we obtain the following corollary:

Corollary 29 (Universality Property for 0-Semilattice Ordered Algebras with a unit). Let X
be an arbitrary set and (A,Ω,+,0,1) ∈ S0

V1
. Each mapping h : X → A can be extended to

a unique homomorphism h : (P<ωFV1(X),Ω,∪, /0,{1}) → (A,Ω,+,0,1) such that h|X = h.

By Theorem 26 and Corollaries 27-29, for an arbitrary variety V ⊆� or V1 ⊆�1, algebras
(P<ω

>0 FV(X),Ω,∪), (P<ωFV(X),Ω,∪, /0) or (P<ω
>0 FV1(X),Ω,∪,{1}) have the universality

property for semilattice ordered algebras in SV , S0
V or SV1 , respectively, but in general, the

algebras themselves need not belong to these varieties.
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Example 30. Let V be a variety of semilattices (A, ·) and V1 be a variety of semilattices
(A, ·,1) with the greatest element 1.

Consider the free semilattice (FV(X), ·) over a set X in the variety V , the free algebra
(FV1(X), ·,1) over a set X in the variety V1 and their two generators x,y ∈ X. One can easily
see that

{x,y} · {x,y} = {x,x · y,y} = {x,y}.
This shows that the algebra (P<ω

>0 FV(X), ·,∪) does not belong to the variety SV . This also
immediately implies that algebras (P<ωFV(X), ·,∪, /0) and (P<ω

>0 FV(X)FV(X), ·,∪,{1}) do
not belong to varieties S0

V and SV1 , respectively.

Corollary 31. [20] The semilattice ordered algebra (P<ω
>0 FV(X),Ω,∪) is free over a set X

in the variety SV if and only if (P<ω
>0 FV(X),Ω,∪) ∈ SV .

Corollary 32. The semilattice ordered algebra (P<ωFV(X),Ω,∪, /0) is free over a set X in
the variety S0

V if and only if (P<ωFV(X),Ω,∪, /0) ∈ S0
V .

Corollary 33. The semilattice ordered algebra (P<ω
>0 FV1(X),Ω,∪,{1}) is free over a set X

in the variety SV1 if and only if (P<ω
>0 FV1(X),Ω,∪,{1}) ∈ SV1 .

Corollary 34. The semilattice ordered algebra (P<ωFV1(X),Ω,∪, /0,{1}) is free over a set
X in the variety S0

V1
if and only if (P<ωFV1(X),Ω,∪, /0,{1}) ∈ S0

V1
.

Corollary 35. [20] Let (F�(X),Ω) be the free algebra over a set X in the variety �. The
extended power algebra (P<ω

>0 F�(X),Ω,∪) is free over X in the variety S� of all semilattice
ordered �-algebras.

Note that, by Corollary 16, the same holds also for any variety defined by a set of linear
identities.

Theorem 36. [20] Let V be a variety defined by a set of linear identities. The extended
power algebra (P<ω

>0 FV(X),Ω,∪) is free over X in the variety SV of all semilattice ordered
V-algebras.

Theorem 37. Let V be a variety defined by a set of linear regular identities. The /0-extended
power algebra (P<ωFV(X),Ω,∪, /0) is free over X in the variety S0

V of all 0-semilattice
ordered V-algebras.

For a variety V let V∗ be its linearization, the variety defined by all linear identities
satisfied in V . Obviously, V∗ contains V as a subvariety.

Since by Theorem 12 and Corollary 13 for any subvariety V ⊆ � the algebra
(P<ω

>0 FV(X),Ω) satisfies only those identities which are obtained from the linear identities
true in V through identification of variables, then for each subvariety V ⊆ �, the algebra
(P<ω

>0 FV(X),Ω) belongs to V∗, but it does not belong to any of its proper subvarieties.

Corollary 38. Let X be an infinite set. For any subvariety V ⊆ � we have

SV∗ = HSP((P<ω
>0 FV∗(X),Ω,∪)).
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Let S be a non-trivial subvariety of SV and X be a set. By [24, Chapter 3.3] the congruence

ΦS(X) :=
⋂

{φ ∈ Con(P<ω
>0 FV(X),Ω,∪) | (P<ω

>0 FV(X)/φ ,Ω,∪) ∈ S}

is the S-replica congruence of (P<ω
>0 FV(X),Ω,∪) and (P<ω

>0 FV(X)/ΦS(X),Ω,∪) is called
the S-replica of (P<ω

>0 FV(X),Ω,∪).
Let (B,Ω,+)∈S . By the universality property of replication (see [24, Lemma 3.3.1.]), for

each homomorphism h : (P<ω
>0 FV(X),Ω,∪) → (B,Ω,+), there is a unique homomorphism

ĥ : (P<ω
>0 FV(X)/ΦS(X),Ω,∪) → (B,Ω,+)

such that
h = ĥ◦natΦS(X),

where natΦS(X) is the natural projection onto the quotient P<ω
>0 FV(X)/ΦS(X). Hence, the

universality property for (P<ω
>0 FV(X),Ω,∪) yields the following commuting diagram for any

mapping h : X → B:

X (P<ω
>0 FV(X),Ω,∪) (P<ω

>0 FV(X)/ΦS(X),Ω,∪)

(B,Ω,+)

↪→ �

�
�
���

�������
h ĥh

i natΦS(X)

As a result, we obtain the following theorem

Theorem 39. The S-replica of the algebra (P<ω
>0 FV(X),Ω,∪) is free over a set X in the

variety S ⊆ SV .

Corollary 40. Let (P<ω
>0 FV(X),Ω,∪) ∈ S . Then it is free in S ⊆ SV over a set X.

Additionally, by Theorem [17, Theorem 3.9] one can obtain a characterization of free
algebras in the quasivariety �S of Ω-subreducts of semilattice ordered algebras in a given
variety S .

Corollary 41. The free algebra (F�S (X),Ω) over X in �S is isomorphic to the full
Ω-subreduct 〈X〉Ω of the free semilattice ordered algebra (FS(X),Ω,+) in S .

Free algebras in a quasivariety �Ω are also free in the variety V (�Ω) generated by �Ω
(see [14]). But note that, even if we have a free semilattice ordered algebra (FS(X),Ω,+) in
a given quasivariety S ⊆ SV , its full Ω-subreduct (〈X〉Ω,Ω) need not be a free algebra in V .
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5. APPLICATIONS

5.1. IDEMPOTENT SLO ALGEBRAS

As we have already shown in Section 4, in varieties of semilattice ordered algebras true
identities are determined by appropriate extended power algebras of algebras and their ho-
momorphic images. Entropic and symmetric identities are both linear and regular. In this
section we focus on the idempotent identities which are linear only if the operation ω occur-
ing there is unary.

Extended power algebras are very rarely idempotent. Note that if the power algebra
(P>0A,Ω) of (A,Ω) is idempotent then the algebra (A,Ω) must be idempotent too. Fur-
thermore, if (A,Ω) is idempotent then for any non-empty subset B of A and ω ∈ Ω, we have
B ⊆ ω(B, . . . ,B). Moreover, as an easy consequence of results of A. Romanowska and J.D.H.
Smith [23, Proposition 2.1] for an idempotent algebra (A,Ω), a non-empty subset B ∈ P>0A
is a subalgebra of (A,Ω) if and only if ω(B, . . . ,B) = B for each ω ∈ Ω.

Corollary 42. [21] The power algebra (P>0A,Ω) of an idempotent algebra (A,Ω) is idem-
potent if and only if each non-empty subset B of A is a subalgebra of (A,Ω).

Example 43. [21] An algebra (A,Ω) such that ω(a1, . . . ,an) ∈ {a1, . . . ,an}, for each n-ary
ω ∈ Ω and a1, . . . ,an ∈ A, is called conservative. By Corollary 42, the power algebra of any
conservative algebra is idempotent. In particular, the power algebra of a chain, the power
algebra of a left zero-semigroup [24], the power algebra of an equivalence algebra [9] and
the power algebra of a tournament [10] are all idempotent.

Let θ be a congruence on an idempotent algebra (A,Ω). Obviously, a θ ω(a, . . . ,a) for
each a ∈ A and ω ∈ Ω. On the other hand, it is not always true that X θ ω(X , . . . ,X) for
a subset X of A, if (P>0A,Ω) is not idempotent. It is enough to consider the equality relation
on (A,Ω) in such a case.

Let (M,Ω) be an idempotent and entropic algebra. Denote by I the variety of all idem-
potent τ-algebras of type τ : Ω∪· {∪} → N

+. Then ConI(P<ω
>0 M) is the set of all congru-

ence relations γ on (P<ω
>0 M,Ω,∪), such that the quotient (P<ω

>0 Mγ ,Ω) is idempotent. By
[24, Section 1.4.3] ConI(P<ω

>0 M) is an algebraic subset of the lattice of all congruences of
(P<ω

>0 M,Ω,∪). Recall that the least element in (ConI(P<ω
>0 M),⊆) is the I-replica congru-

ence of (P<ω
>0 M,Ω,∪).

Let (M,Ω,1) be an idempotent and entropic algebra with the unit 1 ∈ M and let the algebra
(P<ωM,Ω,∪, /0,{1}) be the /0-extended power algebra with the unit {1}. Let us define
a binary relation ρ on the set P<ωM in the following way:

A ρ B ⇔ there exist a k-ary term t and an m-ary term s (6)
both of type Ω such that
A ⊆ t(B,B, . . . ,B) and B ⊆ s(A,A, . . . ,A).
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It was proved in [19] that the relation ρ|P<ω
<0 M is the I-replica congruence of (P<ω

>0 M,Ω,∪)
and is equal to the relation:

A α B ⇔ 〈A〉 = 〈B〉, (7)

where 〈A〉 is the subalgebra of (M,Ω) generated by the set A. Therefore, (P<ω
>0 M/ρ,Ω,∪)∼=

({〈A〉 : A ∈ P<ω
>0 M},Ω,+), where for each n-ary complex operation ω ∈ Ω and non-empty

subsets A1, . . . ,An of M

ω(〈A1〉, . . . ,〈An〉) = 〈ω(A1, . . . ,An)〉 and (8)

〈A1〉+ 〈A2〉 = 〈A1 ∪A2〉. (9)

It is easy to notice that
/0 ρ A ⇔ A = /0

and
{1} ρ A ⇔ A = {1}.

Hence, assuming that 〈 /0〉 = /0, ρ is also the I-replica congruence of (P<ωM,Ω,∪) and
(P<ωM/ρ,Ω,∪) ∼= ({〈A〉 : A ∈ P<ωM},Ω,+).

By Theorem 39 we have the following theorem

Theorem 44. Let M be the variety of all idempotent and entropic Ω-algebras (M,Ω). The
0-semilattice ordered algebra ({〈A〉 : A ∈ P<ωFM(X)},Ω,+, /0) is free over a set X in the
variety S0

M.

Moreover, for any k-ary term t and a subset 1 /∈ S ⊂ M

{1}∪S ⊆ t(S, . . . ,S) ⇔ ∃(s1, . . . ,sk ∈ S) 1 = t(s1, . . . ,sk).

This shows that for a non-empty subset S ⊂ M such that 1 /∈ S

{1}∪S ρ S ⇔ there exists a k-ary term t of type Ω and s1, . . . ,sk ∈ S
such that 1 = t(s1, . . . ,sk).

Lemma 45. Let (M,Ω,1) be an idempotent and entropic algebra with the unit 1 ∈ M. Let
us assume that the algebra (M,Ω,1) satisfies the following condition:

∀(ω ∈ Ω) ∀(x1, . . . ,xn ∈ M) ω(x1, . . . ,xn) = 1 ⇒ ∀(1 ≤ i ≤ n) xi = 1. (10)

Then the relation ρ is the I-replica congruence of (P<ω
>0 M,Ω,∪,{1}) and the quotient

(P<ω
>0 M/ρ,Ω,∪,{1}) is isomorphic to the semilattice ordered algebra:

({〈A〉 : A ∈ P<ω
>0 (M \{1})}∪{〈A∪{1}〉 : A ∈ P<ω

>0 M},Ω,+,{1}).
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Theorem 46. Let M1 be the variety of all idempotent and entropic Ω-algebras (M,Ω,1)
with the unit 1 which satisfy Condition (10).

Then the semilattice ordered algebra ({〈A〉 : 1 /∈ A and A ∈ P<ω
>0 FM(X)}∪

{〈A∪{1}〉 : 1 /∈ A and A ∈ P<ω
>0 FM(X)}∪{{1}},Ω,+,{1}) is free over a set X in the vari-

ety SM1 .

Corollary 47. Let M1 be the variety of all idempotent and entropic Ω-algebras (M,Ω,1)
with the unit 1 which satisfy Condition (10).

Then the 0-semilattice ordered algebra ({〈A〉 : 1 /∈ A and A ∈ P<ωFM(X)}∪
{〈A ∪ {1}〉 : 1 /∈ A and A ∈ P<ωFM(X)},Ω,+, /0,{1}) is free over a set X in the variety
S0
M1

.

5.2. COMMUTATIVE DOUBLE IDEMPOTENT SEMIRINGS

Definition 48. A semiring is an algebra (S, ·,+) such that

1. (S, ·) is a semigroup,

2. (S,+) is a commutative semigroup,

3. for a,b,c ∈ S, a · (b+ c) = a ·b+a · c and (b+ c) ·a = b ·a+ c ·a.

A semiring is said to be commutative if the semigroup (S, ·) is commutative. A semiring
is additively idempotent if the semigroup (S,+) is idempotent and it is multiplicatively idem-
potent if (S, ·) is idempotent. Hence, additively idempotent semirings are simply semilattice
ordered semigroups.

Remark 49. Notice that in the literature of semirings there are several definitions depending
on whether the algebra contains an identity and/or a zero element. See e.g. [7].

Let SG denote the variety of all semigroups. By Theorem 36, since associativity is a linear
identity, the extended power algebra (P<ω

>0 FSG(X), ·,∪) is free over X in the variety SSG
of all additively idempotent semirings. Free additively idempotent semirings, where (S, ·)
belongs to a subvariety of SG, defined by a set of linear identities, can be described in
a similar way.

On the other hand, idempotency is not a linear identity so the extended power algebra of
the free algebra in the variety of all idempotent semigroups (bands) need not be idempotent.
As a consequence, such algebra is not a free algebra in the variety of all additively and mul-
tiplicatively idempotent semirings. Double idempotent semirings were called distributive
·-bisemilattices by R. McKenzie and A. Romanowska and studied in [15].

If the semigroup (S, ·) is also entropic (normal band), i.e. it satisfies for a,b,c,d ∈ S

a ·b · c ·d = a · c ·b ·d,
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then by Theorem 36 the algebra ({〈A〉 : A ∈P<ω
>0 FNB(X)}, ·,+) of all finitely generated sub-

algebras of free algebra FNB(X) in the variety NB of all normal bands is free in the variety
of double idempotent semirings with entropic multiplication reduct. This result coincides
with a construction given by Zhao in [27] where he applied so called closed subsets, since
each non-empty subset of a normal band is closed if and only if it is a subband.

Quite recently Chajda and Langer [3] investigated commutative double idempotent semir-
ings (S, ·,+,0,1) with two constants 0 and 1, such that (S,+,0) and (S, ·,1) are semilattices
with the least element 0 and the greatest element 1, respectively, and for each x ∈ S,

x ·0 = 0 · x = 0.

Clearly, such semirings are exactly 0-semilattice ordered semilattices with a unit 1. In partic-
ular, Chajda and Langer described free algebras in the variety Z of all commutative double
idempotent semirings with two constants. Since commutative semigroups are trivially en-
tropic some results in [3] immediately follow by general ones.

Let SL1 be the variety of all semilattices with a unit 1 and let (FSL(X), ·) be the free semi-
lattice in SL generated by a set X . Obviously, condition (10) is satisfied in any idempotent
monoid so by Corollary 47 we obtain:

Theorem 50. The 0-semilattice ordered algebra ({〈A〉 : 1 /∈ A ∈ P<ωFSL(X)} ∪ {〈A〉 ∪
{1} : 1 /∈ A ∈ P<ωFSL(X)}, ·,+, /0,{1}) is free over a set X in the variety Z = S0

SL1
.

Therefore, directly by Disjunctive Form Lemma 17, every term t(x1, . . . ,xn) ∈ FS0
SL1

(X)

is a sum of some products of variables x1, . . . ,xn (see [3, Lemma 4]).

Furthermore, it is well known that the free algebra generated by X in the variety SL0 is
isomorphic to the semilattice (PX ,∪) of all subsets of X . Then the number of different n-ary
terms in FS0

SL1
(X) is less than or equal to 22n

(see [3, Corollary 5]). The local finiteness of

Z = FS0
SL1

(X) follows also by Theorem 25.

If X is a finite set, then by Theorem 50 the cardinality of FS0
SL1

(X) is twice that of the set

of all subalgebras of the free algebra in the variety SL including the empty set:

|FS0
SL1

(X)| = 2|{(A, ·) : (A, ·) ≤ FSL(X)}|.

In particular, for X = /0 there is only one subalgebra of FSL( /0): the empty set. Then
FS0

SL1
( /0) ∼= ({ /0,{1}}, ·,∪, /0,{1}). Furthermore, for X = {x} we obtain

FS0
SL1

({x}) ∼= ({ /0,{x},{1},{x,1}}, ·,∪, /0,{1}).

For X = {x,y}, the free semilattice FSL(X) on two generators has three elements: x,y,xy and
7 subalgebras (including the empty set): /0,{x},{y},{xy},{x,xy},{y,xy},{x,y,xy}. Hence
|FS0

SL1
({x,y})| = 14.
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Referring to the notion introduced in [3] we say that a subset A of FSL(X) is reduced if

∀(a ∈ A) ∀(k ∈ N
+) ∀(b1, . . . ,bk ∈ A\{a}) a = b1 · · ·bk.

It is evident that for each finitely generated subalgebra (C, ·) of FSL(X) there exists exactly
one finite reduced subset Ar ⊆ FSL(X) such that (C, ·) = 〈Ar〉. Hence, the cardinality of the
free algebra FSSL(X) in the variety SSL of all semilattice ordered semilattices is equal to the
cardinality of all reduced subsets of FSL(X). This implies that the cardinality of FS0

SL1
(X) is

twice that of the set of all reduced subsets of FSL(X) including the empty set.
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Abstract: We present the concept of a differential manifold with infinitesimal operators and we investigate
its geometric properties. We construct an algebra of real numbers with operators and using the Yoneda
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INTRODUCTION

In the paper we construct a generalized space-time which can be an arena of unifying
general relativity (differential geometry of space-time [12]) and quantum mechanics (the-
ory of operators on a Hilbert space [5]). Some generalizations of the notion of differential
manifold as ringed spaces, called the differential spaces or the differentiable spaces, were
introduced earlier by Sikorski [16, 17], Aronszajn [1] and Spallek [18], see also [10]. If M
is a smooth manifold and C∞(M) is the ring of smooth functions on it, we obtain the Siko-
rski differential space (M,C∞(M)) as a ringed space [13]. Differential spaces encode the
structure of space in a ring of functions, and C∞-rings of functions are a natural place for
introducing infinitesimals, as it is done in synthetic differential geometry (see [3, 6, 7, 8, 9]).
Let us notice (see [15]) that using the Yoneda embedding for two C∞-rings A and B one can
define a generalized space as the ringed space (HomC∞(A,B),A), where HomC∞(A,B) is the
set of morphisms from A into B and the C∞-algebra A, called the differential strtucture of
HomC∞(A,B), is defined in the following way:
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For any a ∈ A we define a : HomC∞(A,B) → B by

a(ρ) = ρ(a)

and finally A = {a : a ∈ A}, which is obviously a C∞-ring with the operation:

ω(a1, . . . ,an) = w(a1, . . . ,an)

for n ∈ N, ω ∈ C∞(Rn), a1, . . . ,an ∈ A.

In Section 1, for any R-algebra U we construct a C∞-ring R = R⊕Uε , with nilpotent ε
such that ε2 = 0. In fact, for future applications we consider U as an R-algebra of operators
on some Hilbert space.

In Section 2, for an arbitrary differential manifold M we construct the ringed space
(M,C∞(M)), where M = HomC∞(C∞(M),R) and C∞(M) :=C∞(M)), which is called a man-
ifold with infinitesimal operators.

In Section 3, we prove that C∞-rings: C∞(M) and C∞(M) are isomorphic. In consequence
we obtain a one-to-one correspondence between tensors on M and respective tensors on M.
The differential geometry on M can be interpreted as a copy of the differential geometry
on M. (M,C∞(M)) is a richer space than (M,C∞(M)) but their differential geometries are
„equivalent”.

In Section 4, we present interesting examples of operators which illustrate our construc-
tions. These operators and other concepts of the paper and of the work [15] will be applied
to the theory of unification of relativity theory and quantum mechanics.

1. CARTESIAN SPACES WITH INFINITESIMAL
OPERATORS

First, we recall the notion of the C∞-ring, which plays an important part in our further
considerations.

Definition 1. A unital commutative R-algebra A is a C∞-ring if, given any n,m ∈ N,
ω ∈ C∞(Rn) and a1, . . . ,an ∈ A, the element ω(a1, . . . ,an) is defined and the following con-
ditions are satisfied:

1. for φ ,ψ ∈ C∞(R2) such that φ(x1,x2) = x1 · x2, ψ(x1,x2) = x1 + x2, we have

φ(a1,a2) = a1 ·a2, ψ(a1,a2) = a1 +a2;

2. for πi : Rn → R, πi(x1, . . . ,xn) = xi, i = 1, . . . ,n we have

πi(a1, . . . ,an) = ai;
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3. for the constant function 1 ∈ C∞(Rn), we have

1(a1, . . . ,an) = 1A;

4. for θ ∈ C∞(Rn), ω1, . . . ,ωm ∈ C∞(Rn) we have

(θ ◦ (ω1, . . . ,ωm))(a1, . . . ,an) = θ(ω1(a1, . . . ,an), . . . ,ωm(a1, . . . ,an)).

Let A,B be C∞-rings. A homomorphism f : A → B of R-algebras is called C∞-morphism
if, for any ω ∈ C∞(Rn), n ∈ N, a1, . . . ,an ∈ A, the following equality is satisfied:

f (ω(a1, . . . ,an)) = ω( f (a1), . . . , f (an)).

C∞-rings as objects with C∞-morphisms as morphisms form a category which will be
denoted by C∞.

Of course, R is a C∞-ring with the following operation: for any ω∈C∞(Rn), x1, . . . ,xn∈R,
the element ω(x1, . . . ,xn) is the value of ω for arguments x1, . . . ,xn.

Now, let A be an algebra of operators. We will construct an algebra of real numbers with
infinitesimal operators denoted by R⊕Aε , satisfying the following conditions:

(i) every element has a form x+aε , where x ∈ R, a ∈ A and ε2 = 0,

(ii) (x+aε)+(y+bε) = x+ y+(a+b)ε ,

(iii) (x+aε) · (y+bε) = x · y+(xb+ ya)ε .

Let us consider the pairs (x,a), where x ∈ R and a ∈ A. We define an addition and
a multiplication by:

(x,a)+(y,b) = (x+ y,a+b),

(x,a) · (y,b) = (x · y,xb+ ya)

for x,y ∈ R and a,b ∈ A.

Let us put x = (x,0), aε = (0,a), ε = (0,1), 1 = (1,0), 0 = (0,0), where x ∈ R, a ∈ A,
1 is the identity operator, 0 is the zero operator in A. Every element (x,a) can be written in
the following form:

(x,a) = (x,0)+(0,a) = x · (1,0)+a · (0,1) = x+aε.

Lemma 2. R⊕Aε is a C∞-ring with the operation

ω(x1 +a1ε, . . . ,xn +anε) = ω(x1, . . . ,xn)+
n

∑
i=1

ω ′
|i(x1, . . . ,xn)aiε

for any ω ∈ C∞(Rn).

Proof. The verification of conditions 1–4 in Definition 1 is evident.
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In the sequel we will denote R⊕Aε by R and will say that R is the real line with in-
finitesimal operators aε , where a ∈ A. The Cartesian product Rn = R × ·· · × R is called
n-dimensional space with infinitesimal operators. An arbitrary point (r1, . . . ,rn) ∈ Rn can be
represented uniquely in the following form:

(r1, . . . ,rn) = (x1 +a1ε, . . . ,xn +anε) = (x1, . . . ,xn)+(a1, . . . ,an)ε,

where (x1, . . . ,xn) ∈ R
n, (a1, . . . ,an) ∈ An.

If we put di := aiε , then d2
i = 0 and we can write

(r1, . . . ,rn) = (x1, . . . ,xn)+(d1, . . . ,dn),

where di ∈ D := Aε . For any f ∈ C∞(Rn) we define f̄ : Rn → R by

f̄ (r1, . . . ,rn) = f (x1, . . . ,xn)+
n

∑
i=1

f ′|i(x1, . . . ,xn)aiε

or equivalently

f̄ (x1 +d1, . . . ,xn +dn) = f (x1, . . . ,xn)+
n

∑
i=1

f ′|i(x1, . . . ,xn)di,

where ri = xi +di, i = 1, . . . ,n.

Let us define C∞(Rn) = { f̄ : f ∈ C∞(Rn)}. It is easy to see that C∞(Rn) is a C∞-ring with
the operation:

ω( f̄1, . . . , f̄m) = ω ◦ ( f̄1, . . . , f̄m)

for fi ∈ C∞(Rn), i = 1, . . . ,m, ω ∈ C∞(Rn).

Definition 3. A ringed space (Rn,C∞(Rn)) is called the n-dimensional Cartesian space with
infinitesimal operators.

One can prove the following lemma:

Lemma 4. The mapping H : C∞(Rn) → C∞(Rn) given by

H( f ) = f̄ for f ∈ C∞(Rn)

is an isomorphism of C∞-rings.

2. MANIFOLDS WITH INFINITESIMAL OPERATORS

In this section, we will introduce the category of differential manifolds with infinitesimal
operators using the Yoneda embedding [9]. Let (M,C∞(M)) be a differential manifold of
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the dimension n. Let M := HomC∞(C∞(M),R⊕Aε) be the set of all morphisms between
C∞-rings, C∞(M) and R⊕Aε . Every morphism ρ : C∞(M) → R⊕Aε can be uniquely
represented as a sum

ρ = χ + vχ , (1)

where χ :C∞(M)→R and vχ :C∞(M)→Aε . Every morphism ρ :C∞(M)→R⊕Aε satisfies
the following conditions:

ρ( f ·g) = ρ( f ) ·ρ(g), ρ(k f +g) = kρ( f )+ρ(g) (2)

for any f ,g ∈ C∞(M), k ∈ R.

Lemma 5. An arbitrary morphism ρ ∈ M can be uniquely represented as a sum:

ρ = evx+vχ , (3)

where evx :C∞(M)→R is an evaluation of C∞(M) at some point x∈M and vχ :C∞(M)→Aε
is a derivation at x with values in Aε .

Proof. It follows from (1) and (2) that

χ( f g)+ vχ( f g) = (χ( f )+ vχ( f )) · (χ(g)+ vχ(g))

for any f ,g ∈ C∞(M). Therefore,

χ( f g)+ vχ( f g) = χ( f ) · χ(g)+ vχ( f ) · χ(g)+χ( f ) · vχ(g)

for any f ,g ∈C∞(M). Hence, χ( f g) = χ( f ) ·χ(g) and vχ( f g) = vχ( f ) ·χ(g)+χ( f ) ·vχ(g)
for any f ,g ∈ C∞(M). In a similar way, we can prove that χ and vχ are R-linear mappings.
Since χ : C∞(M) → R is a morphism of C∞-rings, then χ is the evaluation of C∞(M) at
some point x ∈ M (see [11],[2]). Thus, χ = evx and vχ : C∞(M)→Aε satisfies the following
equation:

vχ( f g) = vχ( f )g(x)+ f (x)vχ(g) for any f ,g ∈ C∞(M).

Moreover, every morphism ρ : C∞(M) → R⊕Aε satisfies the following condition:

ρ(ω( f1, . . . , fn)) = ω(ρ( f1), . . . ,ρ( fn)) (4)

for any f1, . . . , fn ∈ C∞(M). Hence, from (1) we get

χ(ω( f1, . . . , fn))+ vχ(ω( f1, . . . , fn)) = ω
(
χ( f1)+ vχ( f1), . . . ,χ( fn)+ vχ( fn)

)
for any f1, . . . , fn ∈ C∞(M). Thus, we obtain the following equality:

χ(ω( f1, . . . , fn))+vχ(ω( f1, . . . , fn))=ω(χ( f1), . . . ,χ( fn))+
n

∑
i=1

ω ′
|i(χ( f1), . . . ,χ( fn))vχ( fi)
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for any f1, . . . , fn ∈ C∞(M), or equivalently

χ(ω( f1, . . . , fn)) = ω(χ( f1), . . . ,χ( fn)) and

vχ(ω( f1, . . . , fn)) =
n

∑
i=1

ω ′
|i(χ( f1), . . . ,χ( fn))vχ( fi)

for any f1, . . . , fn ∈ C∞(M). The first equality means that χ is a morphism of C∞-rings. In
that case, χ = evx for some x ∈ M. The second equality means that vχ : C∞(M) → Aε is
a derivation at x and satisfies

vχ(ω( f1, . . . , fn)) =
n

∑
i=1

∂ω
∂xi

( f1(x), . . . , fn(x))vχ( fi)

for any f1, . . . , fn ∈ C∞(M).

Definition 6. Using the decomposition (3) in Lemma 4, we can define the projection πM :
M → M by

πM(ρ) = x. (5)

The mapping πM : M → M is a bundle of the derivations of the C∞-ring C∞(M) at points
of M with values in Aε . Let us denote by Derx(C∞(M),Aε) the set of all such derivations
at x. Of course, the fiber π−1

M (x) = Derx(C∞(M),Aε). Let topM be the weakest topology in
which all functions from C∞(M) are continuous. We define the topology on M as the family
of the sets {U : U ∈ topM}, where U = HomC∞(C∞(U),R⊕Aε). It is the weakest topology
in which the projection πM : M → M is continuous. Of course, U = π−1

M (U) for U ∈ topM.

For any f ∈ C∞(M) we define f̄ : M → R by

f̄ (ρ) = ρ( f ) for ρ ∈ M,

and C∞(M) := { f̄ : f ∈ C∞(M)}. C∞(M) is C∞-ring with the operation

ω( f̄1, . . . , f̄n) = ω( f1, . . . , fn)

for any ω ∈ C∞(Rn), f1, . . . , fn ∈ C∞(M), n ∈ N.

Definition 7. The ringed space (M,C∞(M)) is called the manifold with infinitesimal opera-
tors associated to the differential manifold (M,C∞(M)).

If x : U → V is a chart on M, U is open in M, V is open in R
n, x = (x1, . . . ,xn), xi : U →R

are coordinates of x, i = 1, . . . ,n, then x̄ : U → V is a chart on M given by

x̄(ρ) = (ρ(x1), . . . ,ρ(xn)),

where U = HomC∞(C∞(U),R), V = x̄(U), U is open in M, V is open in Rn.

168



Space-times with infinitesimal operators

We have the functor M �→ M from the category of differential manifolds to the category
of manifolds with infinitesimal operators. If F : M → N is a smooth mapping, then the
corresponding morphism F : M → N is given by

F(ρ) = evF(x) +F∗xvχ for ρ ∈ M, (6)

where ρ = evx+vχ , χ = evx, ρ is uniquely presented as a sum, F∗xvχ ∈ DerF(x)(C∞(N),Aε)
is defined by the formula:

(F∗xvχ)(β ) = vχ(β ◦F) for any β ∈ C∞(N).

The following diagram:

M N

M N

F

πM πN

F

commutes.

Example. For M = R we have R = HomC∞(C∞(R),R⊕Aε). Every element ρ ∈ R can be
presented as ρ = evx+aε d

dx

∣∣
x, where x ∈ R and a ∈ A are unique for ρ . For any f ∈ C∞(R)

we define f̄ : R → R by
f̄ (ρ) = ρ( f ) = f (x)+ f ′(x)aε.

In Section 1 we constructed the real line R with infinitesimal operator Aε . The mapping
R→ R, ρ �→ x+aε is a bijection and it is an isomorphism of the ringed spaces (R,C∞(R))→
(R,C∞(R)). We generalize this fact for the n-dimensional Cartesian space Rn.

Proposition 8. The mapping Φ : Rn → Rn given by

Φ(ρ) = (ρ(π1), . . . ,ρ(πn)),

where πi : Rn → R are the projections, i = 1, . . . ,n, is an isomorphism of the ringed spaces
(Rn,C∞(Rn)) and (Rn,C∞(Rn)).

Proof. Every ρ can be presented uniquely as ρ = evx +∑n
i=1 di

∂
∂xi

∣∣
x, where x = (x1, . . . ,xn)

∈ Rn, di ∈ Aε for i = 1, . . . ,n. It is easy to see that ρ(πi) = xi +di. Thus, the mapping Φ is
given by the following formula Φ(ρ) = (x1 +d1, . . . ,xn +dn) = x+d. It is evident that Φ is
a bijection.

We will verify that Φ∗C∞(Rn) =C∞(Rn). In fact, for any f ∈C∞(Rn) we have f̄ ∈C∞(Rn)
given by f̄ (x1 + d1, . . . ,xn + dn) = f (x1, . . . ,xn) +∑n

i=1 f ′|i(x1, . . . ,xn)di. Now we consider

Φ∗ f̄ = f̄ ◦Φ. We will verify that f̄ ◦Φ ∈ C∞(Rn). In fact,

( f̄ ◦Φ)(ρ) = f̄ (Φ(ρ)) = f̄ (x1 +d1, . . . ,xn +dn)

= f (x1, . . . ,xn)+
n

∑
i=1

di
∂ f
∂xi

(x1, . . . ,xn) = ρ( f )

Therefore, ( f̄ ◦Φ)(ρ) = ρ( f ) for any ρ ∈ Rn. Thus, f̄ ◦ Φ̄ ∈ C∞(Rn). The further details of
the proof are evident.
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3. DIFFERENTIAL GEOMETRY OF MANIFOLDS WITH
INFINITESIMAL OPERATORS

Let (M,C∞(M)) be a differential manifold of dimension n, and let (M,C∞(M)) be the
manifold with infinitesimal operators associated to M. Now, we prove the following propo-
sition:

Proposition 9. The mapping J : C∞(M) → C∞(M) given by

J( f ) = f̄ for f ∈ C∞(M) (7)

is an isomorphism of C∞-rings.

Proof. Let f ,g ∈ C∞(M). One can see the following implication:

f̄ = ḡ =⇒ f = g.

Indeed, f̄ (ρ) = f (ρ)+vχ( f ) and ḡ(ρ) = g(ρ)+vχ(g) for any ρ ∈ HomC∞(C∞(M),R+Aε)
with χ = evp, f (p),g(p) ∈ R, vp( f ),vp(g) ∈ Aε and p ∈ M. Here, we have used the well-
known fact that the only real-valued C∞-morphism going from C∞(M) is the evaluations
(see [11]). Thus, f = g and the mapping J is a bijection satisfying:

J(ω( f1, . . . , fn)) = ω(J( f1), . . . ,J( fn))

for any ω ∈ C∞(Rn), f1, . . . , fn ∈ C∞(M). Therefore, J is an isomorphism of C∞-rings.

Corollary 10. The C∞(M)-module of derivations Der(C∞(M)) is isomorphic to the C∞(M)-
module of derivations Der(C∞(M)).

Proof. For any X ∈ Der(C∞(M)) we define X ∈ Der(C∞(M)) by

X( f̄ ) = X( f ) for f ∈ C∞(M).

It is easy to see the implication

X = Y =⇒ X = Y for any X ,Y ∈ Der(C∞(M))

and I(X) = J ◦X ◦ J−1. Therefore, the mapping I : Der(C∞(M)) → Der(C∞(M)), given by

I(X) = X for X ∈ Der(C∞(M)), (8)

is an isomorphism of modules.

The isomorphism J allows us to construct differential geometry on manifolds with in-
finitesimal operators.

Definition 11. For any linear connection ∇ : Der(C∞(M))× Der(C∞(M)) → Der(C∞(M))
we define the linear connection ∇ : Der(C∞(M))×Der(C∞(M)) → Der(C∞(M)) by

∇XY = ∇XY for X ,Y ∈ Der(C∞(M)).
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In a similar manner, one can extend the usual definition of any tensor on M to a tensor on
the manifold M with infinitesimal operators.

For any tensor A : Der(C∞(M))×·· ·×Der(C∞(M))→ Der(C∞(M)) of the type (1,n), we
define the tensor A : Der(C∞(M))×·· ·×Der(C∞(M)) → Der(C∞(M)) by

A(X1, . . . ,Xn) = A(X1, . . . ,Xn) for X1, . . . ,Xn ∈ Der(C∞(M)). (9)

Analogously, for any tensor B : Der(C∞(M))×·· ·×Der(C∞(M))→C∞(M) of the type (0,n)
we define the tensor B : Der(C∞(M))×·· ·×Der(C∞(M)) → C∞(M) by

B(X1, . . . ,Xn) = B(X1, . . . ,Xn) for X1, . . . ,Xn ∈ Der(C∞(M)). (10)

There is a one-to-one correspondence between the geometric structures (tensors) on
(M,C∞(M)) and the respective geometric structures (tensors) on (M,C∞(M)). Differ-
ential geometry on (M,C∞(M)) can be lifted to (M,C∞(M)) and, conversely, differential
geometry on (M,C∞(M)) can be projected onto (M,C∞(M)). The projection of geo-
metric notion from M onto M can be organized using the mapping πM : M → M and
J−1 : C∞(M) → C∞(M) or I−1 : Der(C∞(M)) → Der(C∞(M)). The mappings J−1 and I−1

are linear C∞-isomorphisms. For any derivation X ∈ Der(C∞(M)) there exists a unique
derivation X ∈ Der(C∞(M)), X = I−1(X), such that X = X. Let us denote the projection
of X by π∗X. Of course, π∗X = X . It is easy to see, that (π∗X)( f ) = J−1(X( f̄ )) for
f ∈ C∞(M).

For any tensor A : Der(C∞(M))× ·· ·× Der(C∞(M)) → C∞(M) we define its projection
π∗A = A, A : Der(C∞(M))×·· ·×Der(C∞(M)) → C∞(M) by

A(X1, . . . ,Xn) = J−1(A(X1, . . . ,Xn)) for X1, . . . ,Xn ∈ Der(C∞(M)).

Analogously, we can define the projection π∗A = A of a tensor A : Der(C∞(M))× ·· ·
×Der(C∞(M)) → C∞(M) of the same type, given by

π∗A(X1, . . . ,Xn) = I−1(A(X1, . . . ,Xn)) (11)

for any X1, . . . ,Xn ∈ Der(C∞(M)).

For a linear connection ∇∇ : Der(C∞(M))×Der(C∞(M)) → Der(C∞(M)) on M we define
its projection π∗∇∇ : Der(C∞(M))×Der(C∞(M)) → Der(C∞(M)) by

(π∗∇∇)(X ,Y ) = I−1(∇(X ,Y )) for any X ,Y ∈ Der(C∞(M)).

The Lie bracket of the ordered pair of derivations X,Y ∈ Der(C∞(M)) is the derivation
[X,Y] := X◦Y−Y◦X. It is evident that

π∗[X,Y] = [π∗X,π∗Y].

Analogously as on real manifolds we define the torsion tensor

T : Der(C∞(M))×Der(C∞(M)) → C∞(M)

and the curvature tensor

R : Der(C∞(M))×Der(C∞(M))×Der(C∞(M)) → Der(C∞(M))

by
T(X,Y) = ∇XY−∇YX− [X,Y]

and R(X,Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z for any X,Y,Z ∈ Der(C∞(M)).
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It is evident that the torsion T and the curvature R of the projection π∗∇∇ = ∇ are the
respective projections T = π∗T, R = π∗R. Analogously, if we consider the lift ∇ on M of
a connection ∇ on M, the lifts of the torsion T and the curvature R of ∇ are the torsion T and
the curvature R of ∇∇ := ∇.

If g : Der(C∞(M))×Der(C∞(M)) → C∞(M) is a semi-Riemannian metric on M, we can
consider the lift ḡ : Der(C∞(M))× Der(C∞(M)) → C∞(M) on M. If ∇ is the Levi–Civita
connection of g, then ∇ is the Levi–Civita connection of ḡ. The torsion and the curvature
of ∇ are the lifts T and R.

If (M,g) is a space-time, one can consider on M the Einstein equation

Ric+ 1
2ℜg+Λg = 8πT,

where Λ is the cosmological constant, Ric is the Ricci curvature (a symmetric (0,2) tensor),
ℜ ∈ C∞(M) is the scalar curvature and T is the energy-momentum tensor.

One can lift the Einstein equation on M to the manifold M with the infinitesimal operators:

Ric+ 1
2ℜḡ+Λḡ = 8πT.

We have obtained Einstein equation on M. (M, ḡ) is called the space-time with infinitesimal
operators.

4. POSITION AND MOMENTUM OPERATORS

Let us consider the real line R with the infinitesimal operators R = R⊕Uε . Since the
algebra A contains the unit element 1, we can consider a C∞-subalgebra R of R, composed
of elements of the form x + a1ε , x ∈ R, a ∈ R. So, R = R⊕Rε , and it is the ring of
dual numbers. It is clear that (Rn,C∞(Rn)) is a subspace of n-dimensional Cartesian space
with infinitesimal operators (Rn,C∞(Rn)). For any function f ∈ C∞(Rn) we have defined
f̄ : Rn → R by

f̄ (r1, . . . ,rn) = f (x1, . . . ,xn)+
n

∑
i=1

f ′|i(x1, . . . ,xn)aiε,

where ri = xi +aiε , xi ∈ R, ai ∈ R, i = 1, . . . ,n.

Now we consider interesting examples of operators, namely the operators of position Qi :
C∞(Rn) → C∞(Rn), i = 1, . . . ,n, and the operators of momentum P j : C∞(Rn) → C∞(Rn),
j = 1, . . . ,n. Let us recall that Euclidean operators of position and momentum in the space
C∞(Rn) are defined by

Qi : C∞(Rn) → C∞(Rn), (Qiψ)(x) = xiψ(x),
Pj : C∞(Rn) → C∞(Rn), (Pjψ)(x) = −ψ ′

| j(x)

for ψ ∈ C∞(Rn), x = (x1,x2, . . . ,xn) (The last one is the real version of quantum mechanical
operator of momentum.).
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Now let us define

(Qiψ)(r) = (Qiψ)(r), (P jψ)(r) = (Pjψ)(r)

for ψ ∈ C∞(Rn), r = (r1, . . . ,rn), ri = xi +aiε , xi,ai ∈ R, i, j = 1, . . . ,n, or explicitly:

(Qiψ)(r) = xiψ(x)+ψ(x)aiε + xi

n

∑
k=1

ψ ′
|k(x)akε,

(P jψ)(r) = −ψ ′
| j −

n

∑
k=1

ψ ′′
| jkakε.

Proposition 12. The operators of position and momentum satisfy the following commutation
relations:

1◦ [Qi,Q j] = 0,

2◦ [Pi,P j] = 0,

3◦ [Qi,P j] = δi jidC∞(Rn)

for j = 1, . . . ,n.

Proof. The first and second part are easily seen. We will check the last one. We have

(QiP jψ)(r) = xi(Pjψ)(x)+(Pjψ)(x)aiε + xi

n

∑
k=1

(Pjψ)′|kakε

= xi(Pjψ)(x)+(Pjψ)(x)aiε + xi

n

∑
k=1

(−ψ ′′
| jk)(x)akε

= −xiψ ′
| j(x)−ψ ′

| j(x)a jε + xi

( n

∑
k=1

−ψ ′′
| jk(x)akε

)
.

On the other hand,

(P jQiψ)(r) = −(xiψ)′| j(x)−
n

∑
k=1

(xiψ)′′| jk(x)akε

= δi jψ(x)− xiψ ′
| j(x)−

n

∑
k=1

δi jψ ′
|k(x)akε −

n

∑
k=1

δikψ ′
| j(x)akε −

n

∑
k=1

xiψ ′′
| jk(x)akε

= −δi jψ(x)− xiψ ′
| j(x)−δi jψ ′

|k(x)akε −ψ ′
| jaiε −

n

∑
k=1

xiψ ′′
| jkakε.

Computing the commutator of Qi and P j we obtain

[Qi,P j]ψ(r) = QiP jψ(r)−P jQiψ(r) = δi jψ(x)+δi j

n

∑
k=1

ψ ′
|kakε = δi jψ(r).

Thus, we obtain the commutation relations analogous to the classic Weyl–Heisenberg
commutation relation known in quantum mechanics.
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1. INTRODUCTION

Hybrid systems are systems with mixed discrete-continuous dynamics ([22],[2]). The set
of discrete states Q consists of a finite number of elements denoted by q. The admissible
controls set U consists of control functions u : I → Ω defined on a closed interval I with the
values in Ω ∈ R

m. The continuous dynamics in each discrete state is described by ordinary
differential equations (ODEs)

x′ = f (x,u) (1)

or more generally by differential-algebraic equations (DAEs)

0 = F(x′,x,u), (2)
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where x ∈ Rn, f : Rn ×Ω → Rn, F : Rn ×Rn ×Ω → Rn. The transitions between discrete
states are triggered when the condition of the form h(x) ≤ 0 stops to be satisfied, where
h : Rn → R. The functions h(x) are called guards (or switching functions). In this paper the
analysis is restricted to systems with autonomous transitions and without state jumps during
transitions.

The optimal control problem with a hybrid system has been considered in many papers.
The necessary optimality conditions for a class of hybrid systems without state jumps have
been first formulated in [23]. In [3] the variational methods have been used to formulate ad-
joint equations for systems with state jumps. The Pontryagin maximum principle for hybrid
systems with state jumps has been formulated for several classes of hybrid systems in [18],
[15], [16], [17], [19], [20], [21], [7]. In papers [15], [16], [17], [19], [21] also algorithms
based on the hybrid maximum principle are discussed. In [8] time optimal hybrid maximum
principle is considered. Our paper does not consider optimal control problems in which
switching times are decision variables ([14]).

In [10] an algorithm for optimal control problems with hybrid systems described by higher
index DAEs has been introduced. Therein it is assumed that hybrid systems are described
by discrete time state equations resulting from the discretization of system equations by an
implicit Runge–Kutta method.

In none of these papers an optimal control problem with hybrid systems exhibiting sliding
modes has been considered. In [11] some preliminary results on optimal control problems
with sliding modes are given. The aim of this paper is to provide results on trajectory sensi-
tivity analysis of hybrid systems in such a way that they could be used to construct algorithms
for optimal control problems described by hybrid systems. The special attention is paid to
minimum time control problems for which first order method is proposed. It is shown how
the sensitivity analysis can be used to establish global convergence of the method and to de-
rive necessary optimality conditions (in the form of the weak maximum principle) for these
problems.

In order to introduce hybrid systems, consider a hybrid system with two discrete states
collected in a set Q = {1,2} and assume that the transition from a discrete state q = 1 to
q = 2 is triggered when h(x)≤ 0 stops to be satisfied, where h : Rn →R. The transition from
a discrete state q = 2 to q = 1 is triggered when h(x) ≥ 0 ⇔ −h(x) ≤ 0 stops to be satisfied.
The border surface

Σ = {x ∈ R
n : h(x) = 0} (3)

is called the switching surface.

If the hybrid system starts its evolution from a discrete state q = 1 the continuous state
evolves according to an equation

x′ = f1(x,u).

At a transition time tt the continuous state trajectory reaches the switching surface so the
following holds

h(x(tt)) = 0. (4)
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The first order condition which guarantees that the continuous state trajectory will cross the
switching surface Σ is ([6])

hx(x(tt)) f1(x(tt),u(tt))> 0 (5)

where hT
x (x) is the normal vector to Σ at x. If at a transition time

hx(x(tt)) f2(x(tt),u(tt))> 0 (6)

then the discrete state changes from q = 1 to q = 2 and the continuous state continues the
evolution according to the equation x′ = f2(x,u). If at a transition time

hx(x(tt)) f2(x(tt),u(tt))< 0 (7)

then both vector fields f1(x,u) and f2(x,u) point towards the surface Σ and the sliding motion
phenomenon occurs ([4]). We assume that for any control u the hybrid system does not
exhibit sliding motion. It means that at a switching time tt either (5) and (6) hold, or

hx(x(tt)) f2(x(tt),u(tt)) < 0 (8)
hx(x(tt)) f1(x(tt),u(tt)) < 0 (9)

are satisfied (in this case the discrete state changes from q = 2 to q = 1). The paper [12]
discusses the general case of a hybrid system which can have sliding motions.

For the simplicity of presentation we discuss optimal control problems with hybrid sys-
tems which can only have two discrete states.

2. TRAJECTORY SENSITIVITY ANALYSIS

Taking into account the considerations and definitions presented in the previous section,
the optimal control problem of interest—(P′), can be defined as follows:

minu,t f φ(x(t f ), t f ) (10)

subject to the constraints

x′ = f1(x,u) if q = 1
x′ = f2(x,u) if q = 2 (11)

and the terminal constraints

g1
i (x(t f )) = 0 ∀i ∈ E (12)

g2
j(x(t f )) ≤ 0 ∀ j ∈ I. (13)
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It is assumed that the initial state x(0) = x0 is fixed and E, I are finite sets of indices. Notice
that when φ(x(t f ), t f ) = t f we have a minimum time control problem.

Before stating the set of admissible controls we do time transformation in order to ’sepa-
rate’ final time t f , as a decision variable, from control variables u defined on the normalized
horizon [0,1]. We can achieve that by taking the time transformation

[0, t f ] � t → τ ∈ [0,1] : τ =
t
t f
. (14)

Since we have dτ = dt
t f

and the control problem (P′) becomes

minu,t f φ(x(1), t f ) (15)

subject to the constraints

x′ = t f f1(x,u) if q = 1
x′ = t f f2(x,u) if q = 2 (16)

and the terminal constraints

g1
i (x(1)) = 0 ∀i ∈ E (17)

g2
j(x(1)) ≤ 0 ∀ j ∈ I. (18)

For this formulation of our optimal control problem we can introduce the set of admissible
controls. We assume that u belongs to the set

U = {u ∈ L1
m[0,1] : u(t) ∈ Ω ,a. e. on [0,1] = T} (19)

where Ω is a closed convex set in Rm. Furthermore, since the minimum time control problem
is considered, the following is postulated

t f ∈ [tmin
f , tmax

f ] = T f . (20)

The above optimal control problem (15)–(20) we call the problem (P).

The considered control problem can be expressed as an optimization problem over the set
of control functions and the set of parameters in R with the aid of the functions F̄0 : U ×T f →
R, ḡ1

i : U ×T f → R for i ∈ E, ḡ2
j : U ×T f → R for j ∈ I:

F̄0(u, t f ) = φ(xu,t f (1), t f )

ḡ1
i (u, t f ) = g1

i (x
u,t f (1)) ∀i ∈ E

ḡ2
j(u, t f ) = g2

j(x
u,t f (1)) ∀ j ∈ I,

provided that x is the unique function of u and t f , so one can write xu,t f .

The reformulated problem is

min
u∈U , t f ∈T f

F̄0(u, t f ) (21)
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subject to

ḡ1
i (u, t f ) = 0 ∀i ∈ E (22)

ḡ2
j(u, t f ) ≤ 0 ∀ j ∈ I. (23)

The parameter t f can be treated as a constant function: um+1(t) ≡ t f on [0,1] so we can
define the extended admissible set

U e =
{

ue = (u,um+1) ∈ L1
m+1[0,1] : u(t) ∈ Ω a. e. on [0,1],

um+1(t) ∈ T f , um+1 ≡ const
}
. (24)

The following notation will be needed to formulate some relations (the presentation is for
function u): when u is such that its limits, at time tt , and stated below exist then

u(t−t ) = lim
t→tt ,t<tt

u(t), u(t+t ) = lim
t→tt ,t>tt

u(t).

For example, when the hybrid system changes its discrete state from q = 1 to q = 2, the
transition conditions can be stated as

hx(x(t−t )) f1(x(t−t ),u(t−t )) > 0 (25)
hx(x(t+t )) f2(x(t+t ),u(t+t )) > 0 (26)

The notation, as applied in (25)–(26), simplifies presentation of some papers results.

After introducing the extended control ue we can reformulated the equations for the hybrid
system in its discrete states

x′ = t f f1(x,u) = f e
1 (x,ue) if q = 1

x′ = t f f2(x,u) = f e
2 (x,ue) if q = 2 . (27)

This representation of a continuous behaviour of a hybrid system in a discrete state fa-
cilitates the derivation of sensitivity results. Furthermore, it enables us to use control func-
tions defined on the fixed interval T as admissible controls (and for that reason this time
transformation is used in computational methods aimed at solving minimum time control
problems–[9]). However, final sensitivity analysis, adjoint equations and necessary optimal-
ity conditions will be presented by referring directly to controls u and the time parameter
t f .

Our approach to sensitivity of the considered problem heavily relies on the results stated
in [9] (see also [13]). Therein, the sensitivity analysis is based on the linearized equations to
system equations.

Suppose that our system of interest is as follows

x′ = f e(x,ue), (28)

where x(0) = x0 (fixed) and ue and fe are defined as in (24), (27), with the help of function
f e : Rn ×Rm+1 → Rn, the time horizon is T .
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If we denote by xue a solution to the equations for a given ue ∈ U e and by xue+de a solution
for a perturbation de such that ue + de ∈ Ue then xue+de can be approximated by a solution
yue,de to the linearized equations

y′ = ( f e)x (x,ue)y+( f e)ue
(x,ue)de (29)

y(0) = 0. (30)

In particular, the following hold

‖xue‖L∞ ≤ c1 (31)
‖xue+de − xue‖L∞ ≤ c2‖de‖L2 (32)

‖yue,de‖L∞ ≤ c3‖de‖L1 (33)

for some positive constants c1, c2, c3. Furthermore, there exists a function o : [0,∞)→ [0,∞)
such that lims→0+ o(s)/s = 0 and

‖xue+de −
(

xue + yue,de
)
‖L∞ ≤ o(‖de‖L∞) (34)

(Propositions 1.1, 1.3 in [9]).

The linearized equations (29) can be expressed in terms of f , u and t f :

y′ = t f fx(x,u)y+ t f fu(x,u)d + f (x,u)dt , (35)

where de = (d,dt), u+d ∈ U , t f +dt ∈ T f .

As shown in [9] the relations (31)–(34) hold provided that the assumption (H1) is satisfied:

(H1) Ω is convex and a compact set. T f = [tmin
f , tmax

f ] is such that 0 < tmin
f < tmax

f < ∞.
f (·, ·) is differentiable, f , fx and fu are continuous and there exists K < ∞ such that

‖ fx(x,u)‖ ≤ K for all (x,u) ∈ R
n ×Ω . (36)

In order to simplify the notation, for a given ue, x is written instead of xue , xde instead of
xue+de and yde instead of yue,de .

Relations (31)–(34) can be used to provide first order approximations to the functionals
in the problem (P). Indeed, one can show (under certain assumptions specified later) that the
expressions

〈∇F̄0(ue),de〉 = φx(x(1), t f )yde(1)+φt f (x(1), t f )dt (37)

〈∇ḡ1
i (ue),de〉 =

(
g1

i
)

x (x(1))y
de(1), i ∈ E (38)

〈∇ḡ2
j(ue),de〉 =

(
g2

j
)

x (x(1))y
de(1), j ∈ I. (39)

estimate F̄0(ue+de)− F̄0(ue), ḡ1
i (ue+de)− ḡ1

i (ue), i ∈ E, ḡ2
j(ue+de)− ḡ2

j(ue), j ∈ I with ac-
curacy o(‖de‖L∞) where o is a function such that o : [0,∞)→ [0,∞) and lims→0+ o(s)/s = 0.
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We will use these estimates to construct a globally convergent algorithm for solving the
problem (P).

The estimates can be applied both to system equations in the discrete state q = 1 and in
the discrete state q = 2 provided that the hypothesis (H1) applies to the function f1 and to
the function f2 and that switching times tt are fixed.

However, the switching times are determined by controls u and the parameter t f since
switching times are the results of intersecting state trajectory xue with the switching surface.
Switching times are thus functions of extended controls ue. The consequence of that is that
in order to establish linearized equations for the hybrid system on the whole horizon T we
have to evaluate differentials of switching times and take them into account while deriving
solutions to linearized equations considered on the whole horizon.

We assume that switching times occurring at our hybrid system are of the type when the
system changes its discrete state from q = 1 to q = 2, or from q = 2 to q = 1. In other
words the hybrid system does not exhibit sliding motion. It means that at switching times
either relations (5)–(6), or (8)–(9) are satisfied. However, in order to provide the sensitivity
analysis of ’global nature’ (needed for the convergence analysis of an algorithm) we have
these relations to be fulfilled in neighourhoods of switching times—these conditions are
stated as the hypothesis (H2).

In order to analyse the changes of switching times due to the perturbations of ue suppose
that for the extended control ue the switching time tt is evaluated according to the equation

h(x(t−t )) = 0.

When the control ue is perturbed by de then a new switching time, denoted by tde
t , will satisfy

h(xde(tde−
t )) = 0,

and, in general case, tde
t = tt .

After the transition the state function xd evolves on an interval [tde
t ,1] according to the

equations (
xde
)′

= f e
2 (x

de ,ue +de).

We will show that there exists the linear operator dtt which assigns to each de a real
number dtde

t such that the following condition (see Theorem 1)

tde
t − tt = dtde

t +o(‖de‖L∞) (40)

holds for all ue and de such that ue + de ∈ U e. Here, o : (0,∞) → (0,∞) and lims→0 s−1o(s)
= 0. Moreover, dtde

t is given by the formula

dtde
t = − hx(x(t−t ))yde(t−t )

hx(x(t−t )) f e
1 (x(t

−
t ),ue(t−t ))

. (41)
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Then there exists the operator dx− which assigns to each de a vector dxde
− according to the

formula
dxde

− = yde(t−t )+ f e
1 (x(t

−
t ),ue(t−t ))dtde

t . (42)

According to Theorem 1, operator dx− satisfies the condition

‖xde(tde−
t )− x(t−t )−dxde

−‖ ≤ o(‖de‖L∞), (43)

for all ue and de such that ue +de ∈ U e, where o : (0,∞) → (0,∞) and lims→0 s−1o(s) = 0.

Furthermore, from Theorem 1 there exists the operator dx+ which assigns to each de
a vector dxde

+ according to the formula

dxde
+ = yde(t+t )+ f e

2 (x(t
+
t ),ue(t+t ))dtd

t , (44)

which satisfies the condition

‖xd(td+
t )− x(t+t )−dxd

+‖ ≤ o(‖d‖L∞) (45)

for all ue and de such that ue +de ∈ U e, where o : (0,∞) → (0,∞) and lims→0 s−1o(s) = 0.

Since dxd
− and dxd

+ are linear operators (yde is linear and due to (41) dtde
t is also linear)

and (43), (45) are satisfied, they are differential. This implies that we must have dxd
− = dxd

+

and as a consequence of that yde can exhibit a jump at tt :

yde(t+t ) = yde(t−t )+
[

f e
1 (x(t

−
t ),ue(t−t ))− f e

2 (x(t
+
t ),ue(t+t ))

]
dtde

t , (46)

provided that dtde
t = 0.

The analysis above has been possible due to Theorem 1 which establishes results concern-
ing differentials associated with changes of switching times for a particular type of hybrid
systems in which sliding motion does not occur. The proof of the theorem can be carried out
in a similar way as the proof of Theorem 3.1 in [12].

Theorem 1 requires several assumptions (similar to assumptions (H2) and (H3) in [12]).
The meaning of the assumption (H2) has already been discussed, the other assumption, (H3),
is needed since we explore behaviour of the hybrid system ’just before’ (and ’just after’)
a discrete state switching and the system is controlled by u fulfilling mild restrictions, i.e.,
u ∈ U .

(H2) function h(·) is differentiable and there exist 0 < L1 <+∞ and 0 < L2 <+∞ such that

‖hx(x̂)−hx(x)‖ ≤ L1‖x̂− x‖ (47)
|hx(x̂) fi(x̂, û)−hx(x) fi(x,u)| ≤ L2‖(x̂, û)− (x,u)‖ (48)

for all (x,u), (x̂, û) in R
n ×Ω .

Furthermore, there exists ε > 0 and 0 < L3 < +∞ such that for all switching points tt
(each switching time corresponds to some ue ∈ U e) and for all their perturbations tde

t
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triggered by perturbations de such that ue +de ∈ U e, ‖de‖L2 ≤ ε , and for all θ ∈ [0,1]
we have

hx(x(τθ ,de(tt))) fi(x(τθ ,de(tt)),u(τθ ,de(tt))) ≥ L3, (49)

or

hx(x(τθ ,de(tt))) fi(x(τθ ,de(tt)),u(τθ ,de(tt))) ≤ −L3, (50)

for i = 1,2, where

τθ ,de(tt) = tt +θ(tde
t − tt). (51)

(H3) For any u ∈ U and any switching point tt the following limits exist

lim
t→tt ,t<tt

u(t), lim
t→tt ,t>tt

u(t) (52)

(and are denoted by u(t−t ) and u(t+t ) respectively).

Theorem 1. Suppose that at the first considered discrete state the system evolution is given
by

x′ = f e
1 (x,ue) (53)

and at the other by

x′ = f e
2 (x,ue). (54)

We assume that functions defining systems evolution in the both discrete states satisfy (H1),
and if the system changes state from the first state to the other at the switching time tt satis-
fying

h(x(tt)) = 0, (55)

and the hypothesis (H2) holds for equations (53)–(54) then

hx(x(t−t ))yde(t−t )+hx(x(t−t )) f e
1 (x(t

−
t ),ue(t−t ))(tde

t − tt)+o(‖d‖L∞) = 0,

for all ue and de such that ue +de ∈ Ue where o is such that lims→0 |o(s)|/s = 0, and

dtde
t = −

[
hx(x(t−t ))yde(t−t )

]
/
[
hx(x(t−t )) f e

1 (x(t
−
t ),ue(t−t ))

]
. (56)

Furthermore,

(i) ∥∥∥xde
1 (tde−

t )− x1(t−t )− yde
1 (t−t )− f e

1 (x(t
−
t ),ue(t−t ))dtde

t

∥∥∥≤ o(‖de‖L∞), (57)

for all ue and de such that ue+de ∈ Ue where x1, xde
1 are solutions to the equation (53)

and yde
1 are solutions to the linearized equations associated with equations (53), here

o is such that lims→0 |o(s)|/s = 0;
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(ii) ∥∥∥xde
2 (tde+

t )− x2(t+t )− yde
2 (t+t )− f e

2 (x(t
+
t ),ue(t+t ))dtde

t

∥∥∥≤ o(‖de‖L∞), (58)

for all ue and de such that ue + de ∈ U e where x2, xde
2 are solutions to the equations

(54) and yde
2 are solutions to the linearized equations associated with equations (54),

here o is such that lims→0 |o(s)|/s = 0.

The fact that solutions to linearized equations of hybrid systems can exhibit jumps (as
stated in (46)) causes that relations (31)–(34) do not apply to hybrid systems. Furthermore,
in the case of the considered hybrid system a trajectory x generated by a control ue ∈ Ue

will consist of pieces of trajectories of the system being in discrete state q = 1 (on the time
intervals A1

i , i ∈ I1) and pieces of trajectories of the system being in the discrete state q = 2
(on the time intervals A2

i , i ∈ I2). We have ∪i∈IiA1
i ∪i∈I2 A2

i = [0,1].

The first issue is resolved by redefining our meaning of solutions to linearized equations—
we substitute yde by yde

rc

yde
rc(t) =

{
yde(t), if t ∈ [0,1], t = tt
yde(t+t ), if t = tt

.

The second issue, which concerns the varying sizes of subintervals A1
i and A2

i does not
restrain us from using (31)–(34) in relation to hybrid systems as was shown in the proof of
Theorem 3.2 presented in [12]. Theorem 2 is Theorem 3.2 adopted to the hybrid systems
considered in this paper. Theorem 2 requires the additional assumption which postulates the
finite number of switching times for any admissible control ue.

Let Nt(ue) be the number of switching times triggered by a control ue ∈ U e then the
hypothesis is as follows.

(H4) There exists a nonnegative integer number It <+∞ such that Nt(ue) ≤ It , ∀ue ∈ Ue.

Theorem 2. Suppose that x is the trajectory generated by ue ∈ Ue, xde the trajectory gener-
ated by ue+de and yde is the solution to the linearized equations induced by the perturbation
de of ue. Then, if (H1), (H2), (H3) and (H4) are satisfied, there exist positive constants c1,
c2, c3 and a function o : ([0,∞]→ (0,∞) such that lims→0+ o(s)/s= 0 for which the following
hold

‖x‖L∞ ≤ c1 (59)
‖xde − x‖L∞ ≤ c2‖de‖L∞ (60)

‖yde
rc‖L∞ ≤ c3‖de‖L1 (61)

‖xde −
(

x+ yde
rc

)
‖L∞ ≤ o(‖de‖L∞) , (62)∥∥∥xde(tde−

t )− x(t−t )−dxde
−
∥∥∥ ≤ o(‖de‖L∞) (63)∥∥∥xde(tde+

t )− x(t+t )−dxde
+

∥∥∥ ≤ o(‖de‖L∞) (64)

for any ue ∈ U e and de such that ue +de ∈ U e, and any switching point tt .
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Relations (59)–(64) enable us to: derive adjoint equations for hybrid systems; construct
globally convergent algorithms for the problem (P); state necessary optimality conditions for
the considered optimal control problem. The benefits of relations (59)–(64) are illustrated
by considering a first order method for solving the problem (P). The method which will be
discussed for the rest of the paper is analyzed in details in [9] therefore we only focus on
these parts of the analysis which need attention when optimal control problems with hybrid
systems are concerned.

3. GLOBALLY CONVERGENT ALGORITHM

The method we propose for solving the problem (P) is based on an exact penalty function.
By using an exact penalty function approach, instead of solving the problem (P), we solve
the problem (Pc)

min
ue∈Ue

F̄e
c (ue) (65)

in which the exact penalty function F̄e
c (ue) is defined as follows

F̄e
c (ue) = F̄e

0 (ue)+ cmax
[

0,max
i∈E

∣∣ḡ1
i (ue)

∣∣ ,max
j∈I

ḡ2
j(ue)

]
(66)

For fixed c and ue the direction finding subproblem, Pc(ue), for the problem (Pc) is:

min
de∈Due ,β∈R

[
〈∇F̄e

0 (ue),de〉+ cβ +1/2‖de‖2
L2

]
subject to ∣∣ḡ1

i (ue)+
〈
∇ḡ1

i (ue),de
〉∣∣ ≤ β ∀i ∈ E

ḡ2
j(ue)+

〈
∇ḡ2

j(ue),de
〉

≤ β ∀ j ∈ I.

Here,

Due

{
de ∈ L2

m+1[T ] : de ∈ U e −ue
}
.

The subproblem can be reformulated as an optimization problem with the objective func-
tion which is strictly convex. The problem therefore has the unique solution (d̄e, β̄ ). Since
this solution depends on c and ue, we may define descent function σc(ue) and penalty test
function tc(ue), to be used to test optimality of a control u and to adjust c, respectively, as

σc(ue) =
〈
∇F̄e

0 (ue), d̄e
〉
+ c
[
β̄ −M(ue)

]
(67)
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and

tc(ue) = σc(ue)+M(ue)/c (68)

for given c > 0 and ue ∈ Ue. Here,

M(ue) = max
[

0,max
i∈E

∣∣ḡ1
i (ue)

∣∣ ,max
j∈I

ḡ2
j(ue)

]
,

Our algorithm is as follows.

Algorithm. Fix parameters: γ, η ∈ (0,1), c0 > 0, κ > 1.

1. Choose the initial control u0
e ∈ Ue. Set k = 0, c−1 = c0.

2. Let ck be the smallest number chosen from {ck−1,κck−1,κ2ck−1, . . .} such that the
solution (dk

e ,β k) to the direction finding subproblem Pck(uk
e ) satisfies

tck(uk
e) ≤ 0. (69)

If σck(uk
e) = 0 then STOP.

3. Let αk be the largest number chosen from the set {1,η ,η2, . . . ,} such that

uk+1
e = uk

e +αkdk
e

satisfies the relation

F̄ck(uk+1
e )− F̄ck(u)e ≤ γαkσck(uk

e). (70)

Increase k by one. Go to Step 2.

In order to establish convergence of Algorithm we need to introduce two additional hy-
potheses. The first one concerns the functions defining the objective and constraints:

(H5) φ , g1
i , i ∈ E, g2

j , j ∈ I are continuously differentiable functions.

The second one is related to a constraint qualification. To this end we first introduce the
set

De =
{

de ∈ L2
m+1[T ] : there ∃ ue ∈ Ue such that ue +de ∈ U e}

and the set

Fe(ue) =

{
de ∈ De : max

j∈I

〈
∇ḡ2

j(ue),de
〉
< 0
}
.

Then the constraint qualification condition takes the form
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(CQ) for each ue ∈ U e, Fe(ue) = /0, and in the case E = /0 we have

0 ∈ interiorE(ue) (71)

where

E(ue) =
{{

〈∇ḡ1
i (ue),de〉

}
i∈E ∈ R

|E| : de ∈ Fe(ue)
}
.

Under stated assumptions Algorithm is globally convergent in the following sense.

Theorem 3. Assume that data for (P) satisfies hypotheses (H1), (H2), (H3), (H4), (H5)
and (CQ). Let {uk

e} be a sequence of controls generated by Algorithm and let {ck} be a
sequence of the corresponding penalty parameters. Then

i) {ck} is a bounded sequence

ii)

lim
k→∞

σck(uk
e) = 0, lim

k→∞
M(uk

e) = 0. (72)

iii) Let ūe be a L∞ limit point of the sequence {uk
e} and x̄ the trajectory corresponding to

ūe, then the necessary optimality conditions hold:

(NC) :

0 ≤ min
de∈Dūe

[
φx(x̄(1), t f )yde(1)+φt f (x̄(1), t f )dt

]
(73)

subject to the constraints

g1
i (x̄(1))+

(
g1

i
)

x (x̄(1))y
de(1) = 0, i ∈ E (74)

g2
j(x̄(1))+

(
g2

j
)

x (x̄(1))y
de(1) ≤ 0, j ∈ I0,ūe (75)

together with g1
i (x̄(1) = 0, i ∈ E, g2

j(x̄(1)) ≤ 0, j ∈ I. Here,

Iε,ue =

{
j ∈ I : ḡ2

j(ue) ≥ max
j∈I

ḡ2
j(ue)− ε

}
.

Proof. (sketch) Notice that the descent function σck(uk
e) is nonpositive valued at each itera-

tion. Indeed, we have 〈
∇F̄e

0 (u
k
e),de

〉
+ ckβ +1/2‖de‖2

L2 ≤ ckM(uk),

which holds because 0 ∈ Ue −uk
e. This implies that〈

∇F̄e
0 (u

k
e),de

〉
+ ck

[
β −M(uk

e)
]
≤ −1/2‖de‖2

L2 ≤ 0. (76)
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Algorithm generates a sequence of controls {uk
e} and the corresponding sequence of

penalty parameters {ck} such that {ck} is bounded and any accumulation point of {uk
e} sat-

isfies optimality conditions in the form of the weak maximum principle for the problem (P),
i.e. σc̄(ūe) = 0 for the limit point ūe and the limit point of the sequence {ck}. But σc̄(ūe) = 0
implies that M(ūe) = 0 due to the definition (68) and since (69) holds.

The proof of the theorem follows the scheme of the proof of Theorem 5.1 in [9]. It is
heavily based on sensitivity results stated in Propositions 1.1 and 1.3 (in the case of Theorem
5.1) and stated in Theorem 2 (in the case of the considered theorem). The differences in these
sensitivity results are not significant as far as the convergence of Algorithm is concerned
(Algorithm can be applied to optimal control problems with dynamics: x′ = f (x,u) and it
will be globally convergent according to Theorem 5.1.).

The proof of Theorem 5.1 is carried out in two steps. In the first step it is shown that
under (H1) and (CQ) for any u ∈ U there exists a finite ĉ > 0 such that for c ≥ ĉ tc(u)≤ 0 is
satisfied. In the second step it is demonstrated that under (H1) and (H5) for any u ∈ U and
c > 0 such that σc(u)≤ 0 there exists ĉ > 0 for which (70) holds for any α ∈ (0, α̂), provided
that σc(u) < 0. The analysis carried in these two steps provides also the justification for
σc(ūe) = 0, M(ūe) = 0 to be used as necessary optimality conditions.

4. ADJOINT EQUATIONS

As it is shown in [9] the implementation of an algorithm for solving the considered opti-
mal control problem requires the evaluation of the scalar products: 〈∇F̄e

0 (ue),de〉,
〈∇ḡ1

i (ue),de〉, i ∈ E, 〈∇ḡ2
j(ue),de〉, j ∈ I.

The system can change its discrete state several times on the interval [0,1]. For the sim-
plicity of presentation it is assumed that in the time interval [0, tt ] the system evolves ac-
cording to the equation x′ = f e

1 (x,ue). At a transition time tt the continuous state trajectory
crosses the switching surface and then is determined by the equation x′ = f e

2 (x,ue) up to a
final time 1.

Proposition 4. Assume that (H1), (H2) and (H3) are satisfied. Suppose that the system
evolves on the time interval [0, tt ] according to the equation x′ = f e

1 (x,ue). At a transition
time tt the continuous state trajectory crosses the switching surface and then is determined
by the equation x′ = f e

2 (x,ue) up to a final time 1. If φ is continuously differentiable with
respect to its arguments then

〈∇F̄e
0 (ue),de〉 =

[
φt f (x(1), t f )

−
∫ tt

0
λ T

1 (t) f1(x(t),u(t))d(t)dt −
∫ 1

tt
λ T

2 (t) f2(x(t),u(t))d(t)dt
]

dt

−
∫ tt

0
λ T

1 (t)( f e
1 )u(x(t),ue(t))d(t)dt −

∫ 1

tt
λ T

2 (t)( f e
2 )u(x(t),ue(t))d(t)dt. (77)
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where λ1, λ2 are solutions to the adjoint equations:

(λ T
1 )′(t) = −λ T

1 (t)( f e
1 )x(x(t),ue(t)), t ∈ [0, tt ] (78)

and
(λ T

2 )′(t) = −λ T
2 (t)( f e

2 )x(x(t),ue(t)), t ∈ [tt ,1). (79)

with the terminal condition
λ2(1) = −φ T

x (x(1), t f ). (80)

and the jump conditions

πhx(x(tt))T +λ1(tt)−λ2(tt) = 0 (81)
λ2(tt)T f e

2 (x(t
+
t ),ue(t+t ))−λ1(tt)T f e

1 (x(t
−
t ),ue(t−t )) = 0. (82)

where π is the number which under (H2) can be evaluated from (81)–(82).

Proof. To derive the adjoint equations the following augmented functional is constructed

Φ(x,u, t f ,λ1,λ2,π) = φ(x(1), t f )+πh(x(tt))

+
∫ tt

0

[
λ T

1 (t)
(
x′(t)− f e

1 (x(t),ue(t))
)]

dt

+
∫ 1

tt
λ T

2 (t)
(
x′(t)− f e

2 (x(t),ue(t))
)

dt.

One can evaluate the variation of the augmented functional

dΦ(x,u, t f ,λ1,λ2,π) = φx(x(1), t f )dx(1)+φt f (x(1), t f )dt

+πhx(x(tt))dx(tt)+λ T
1 (tt)

(
x′(t−t )− f e

1 (x(t
−
t ),ue(t−t ))

)
dtt

+d
[∫ tt

0

[
λ T

1 (t)
(
x′(t)− f e

1 (x(t),ue(t))
)]

dt
]
−λ T

2 (tt)
(
x′(t+t )

− f e
2 (x(t

+
t ),ue(t+t ))

)
dtt +d

[∫ 1

tt
λ T

2 (t)
(
x′(t)− f e

2 (x(t),ue(t))
)

dt
]
.

By taking into account the fact that dx(1) = yde(1) and by integrating by parts the formulas∫
λ (t)x(t)dt one can obtain

dΦ(x,u, t f ,λ1,λ2,π) = φx(x(1), t f )yde(1)
+φt f (x(1), t f )dt +πhx(x(tt))dx(tt)

+λ T
1 (tt)

(
x′(t−t )− f e

1 (x(t
−
t ),ue(t−t ))

)
dtt

+d
[[

λ T
1 (t)x(t)

]tt
0

]
−d
[∫ tt

0

(
(λ T

1 )′(t)x(t)

+λ T
1 (t)( f e

1 (x(t),ue(t)))
)

dt
]
−λ T

2 (tt)
(
x′(t+t )− f e

2 (x(t
+
t ),ue(t+t ))

)
dtt

+d
[[

λ T
2 (t)x(t)

]1
tt

]
−d
[∫ 1

tt

(
(λ T

2 )′(t)x(t)+λ T
2 (t) f e

2 (x(t),ue(t))
)

dt
]
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Expanding further the variations and taking into account the initial conditions of the lin-
earized equations the following equation is obtained

dΦ(x,u, t f ,λ1,λ2,π) = φt f (x(1), t f )dt +φx(x(1))yde(1)

+πhx(x(tt))dx(tt)

+λ T
1 (tt)x′(t−t )dtt −λ T

1 (tt) f e
1 (x(t

−
t ),ue(t−t ))dtt

+λ T
1 (tt)yde(t−t )−

∫ tt

0

(
(λ T

1 )′(t)yde(t)

+ λ T
1 (t)( f e

1 )x(x(t),ue(t))yde(t)+λ T
1 (t)( f e

1 )ue(x(t),ue(t))de(t)
)

dt

−λ T
2 (tt)x′(t+t )dtt +λ T

2 (t+t ) f e
2 (x(t

+
t ),ue(t+t ))dtt +λ T

2 (1)yde(1)−λ T
2 (tt)yde(t+t )

−
∫ 1

tt

(
(λ T

2 )′(t)yde(t)+λ T
2 (t)( f e

2 )x(x(t),ue(t))yde(t)

+ λ T
2 (t)( f e

2 )ue(x(t),ue(t))de(t)
)

dt.

Now the formula for the differential dx(tt) is utilized and rearrangement of the components
with respect to differentials dx(tt), dtt and variations yde(1), yde(t), d(t), dt leads to

dΦ(x,u, t f ,λ1,λ2,π) = φt f (x(1), t f )dt +
(
φx(x(1), t f )+λ T

2 (1)
)

yde(1)

+
(
πhx(x(tt))+λ T

1 (tt)−λ T
2 (tt)

)
dx(tt)

+
(
λ T

2 (tt) f e
2 (x(t

+
t ),ue(t+t ))−λ T

1 (tt) f e
1 (x(t

−
t ),ue(t−t ))

)
dtt

−
∫ tt

0

((
(λ1)

′(t)+λ T
1 (t)( f e

1 )x(x(t),ue(t))
)

yde(t)

+λ T
1 (t)( f e

1 )u(x(t),ue(t))d(t)+λ T
1 (t) f1(x(t),u(t))dt

)
dt

−
∫ 1

tt

((
(λ T

2 )′(t)+λ T
2 (t)( f e

2 )x(x(t),ue(t))
)

yde(t)

+λ T
2 (t)( f e

2 )u(x(t),ue(t))d(t)+λ T
2 (t) f2(x(t),u(t))dt

)
dt.

Now conditions for adjoint equations are stated in such a way that the expressions with
differentials dx(tt), dtt and variations yde(1), yde(t) disappear, so eventually only the coeffi-
cients with variations d(t), dt remain.

To this end the following components have to be equal to zero(
(λ T

1 )′(t)+λ T
1 (t)( f e

1 )x(x(t),ue(t))
)

yde(t), t ∈ [0, tt ](
(λ T

2 )′(t)+λ T
2 (t)( f e

2 )x(x(t),ue(t))
)

yde(t), t ∈ [tt ,1].

This can be achieved by assuming that λ1, λ2 are solutions to the equations (78)–(79) together
with the transversality condition (80).

When we zero components related to dx(tt) and dtt we come to the equations (81)–(82).
Under the assumption (H2) these equations can be solved with respect to π and λ1(tt) to get

π =
λ2(tt)T ( f e

1 (x(t
−
t ),ue(t−t ))− f e

2 (x(t
+
t ),ue(t+t ))

)
hx(x(tt) f e

1 (x(t
−
t ),ue(t−t ))

λ1(tt) = λ2(tt)−πhx(x(tt))T .
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Having solutions to the adjoint equations for λ1 and λ2 the first variation of a cost function
φ(x(1), t f ), with respect to a control function variation d and dt , we arrive at the thesis if we
notice that

〈
∇F̄e

0 (ue),de
〉
= dΦ(x,u, t f ,λ1,λ2,π).

5. THE WEAK MAXIMUM PRINCIPLE

On the basis of the defined adjoint equations one can formulate the weak maximum prin-
ciple for the considered problem. Suppose that ūe = (ū, t̄ f ) is the problem solution. The weak
maximum principle for the problem (P) can take a quite complicated form, depending on the
number of switching points triggered by the optimal control ūe. In order to exemplify the
possible conditions stated by the weak maximum principle, we assume that there is only one
switching point and at this point the system changes its discrete state from the state q = 1
to the state q = 2—we call this case as Case 1–2. For this case the necessary optimality
conditions (NC12) will shape as follows (they are expressed in terms of the original problem
formulation, so t̄t is the switching time evaluated on the time interval [0, t̄ f ]).

(NC12): There exist: nonnegative numbers α2
j , j ∈ I, numbers α1

i , i ∈ E such that ∑i∈E
∣∣α1

i

∣∣
+∑ j∈I α2

j = 0; number π; absolutely continuous function λ1, λ2 such that the following
conditions hold:
(i) terminal conditions

λ2(t̄ f ) = φ T
x (x̄(t̄ f ), t̄ f )+ ∑

i∈E
α1

i
(
g1

i
)T

x (x̄(t̄ f ))+∑
j∈I

α2
j
(
g2

j
)T

x (x̄(t̄ f ))

(ii) adjoint equations
a.e. on [t̄t , t̄ f )

λ ′
2 = −( f2)

T
x (x̄, ū)λ2;

a.e. on [0, t̄t ]

λ ′
1 = −( f1)

T
x (x̄, ū)λ1

(iii) jump conditions

πhx(x̄(t̄t))T +λ1(t̄t)−λ2(t̄t) = 0
λ2(t̄t)T f2(x̄(t̄+t ), ū(t̄+t ))−λ1(t̄t)T f1(x̄(t̄−t ), ū(t̄−t )) = 0.

from which terminal conditions for λ1 at point t̄t can be evaluated;
(iv) the weak maximum principle
a.e. on [t̄t , t̄ f )

λ T
2 (t)( f2)u (x̄(t), ū(t))u ≤ λ T

2 (t)( f2)u (x̄(t), ū(t))ū(t)
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a.e. on [0, t̄t)

λ T
1 (t)( f1)u (x̄(t), ū(t))u ≤ λ T

1 (t)( f1)u (x̄(t), ū(t))ū(t)

for all u ∈ Ω ;

−φt f (x̄(t̄ f ), t̄ f )t f +
t f

t̄ f

(∫ t̄t ,

0
λ1(t) f1(x̄(t), ū(t))dt +

∫ t f

t̄t
λ2(t) f2(x̄(t), ū(t))dt

)
≤ −φt f (x̄(t̄ f ), t̄ f )t̄ f +

∫ t̄t

0
λ1(t) f1(x̄(t), ū(t))dt +

∫ t̄ f

t̄t
λ2(t) f2(x̄(t), ū(t))dt

for all t f ∈ T f ;
(v) complementarity conditions

α2
j = 0, if j ∈ I0,ūe .

Having adjoint equations, assuming the constraint qualification (CQ) and taking into ac-
count Theorem 2 one can derive necessary optimality conditions for the problem (P) and its
case Case 1–2. The necessary optimality conditions (NC12) are stated in the form of the
weak maximum principle.

The maximum condition stated for the final time variable will agree with the well–known
condition for minimum time control problems if a hybrid system stays in one discrete state
on the whole horizon [0, t̄ f ].

Suppose that the discrete states switching does not occur, so for the optimal pair (ū, t̄ f ) the
continuous state is decsribed by the equation x′ = f1(x,u). Then, according (for example) to
[5] the Hamiltonian H(x̄, ū,λ1) = λ T

1 f1(x̄, ū) is a constant function of time and we can take
H(x̄(t̄ f ), ū(t̄ f ),λ1(t̄ f )) as this constant value. Then we have

−φt f (x̄(t̄ f ), t̄ f )t f +
t f

t̄ f
H(x̄(t̄ f ), ū(t̄ f ),λ1(t̄ f ))t̄ f

≤ −φt f (x̄(t̄ f ), t̄ f )t̄ f +H(x̄(t̄ f ), ū(t̄ f ),λ1(t̄ f ))t̄ f

from which the standard maximum condition for the minimum time control problem follows(
−φt f (x̄(t̄ f ), t̄ f )+H(x̄(t̄ f ), ū(t̄ f ),λ1(t̄ f ))

)
t f

≤
(
−φt f (x̄(t̄ f ), t̄ f )+H(x̄(t̄ f ), ū(t̄ f ),λ1(t̄ f ))

)
t̄ f

(see, for example, [5]).

Theorem 5. Assume that the hypotheses (H1), (H2), (H3), (H4), (H5), (CQ) for the prob-
lem (P) are satisfied. If (x̄, ū, t̄ f ) is a solution to the problem (P) and Case 1–2 holds, then
the necessary optimality conditions (NC12) are satisfied.
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Proof. As shown in the proof of Theorem 5.1 in [13] the conclusions of the proof of Theo-
rem 3 can be expressed by

min
de∈Dūe

max
γ∈K

Ψ(de,γ) = 0

where

K =
{

γ =
(
α0,{α1

i }i∈E ,{α2
j } j∈I

)
∈ R

1+|E|+|I| : α0 ≥ 0, α2
j ≥ 0, j ∈ I,

α0 + ∑
i∈E

∣∣α1
i
∣∣+∑

j∈I
α2

j = 1, α2
j = 0 if j ∈ I0,ūe

}

and

Ψ(de,γ) := α0 〈∇F̄e
0 (ū),de〉+ c

(
∑
i∈E

α1
i
〈
∇ḡ1

i (ūe),de
〉
+ ∑

j∈I0,ūe

α2
j
〈
∇ḡ2

j(ūe),de
〉)

.

Ψ(·,γ) is a linear function on L2
m+1[T ] of which Dūe is a convex subset. Ψ(d, ·) is

a bounded linear map and K is a compact convex set with respect to the product topol-
ogy of R1+|E|+|I|. It follows from the minimax theorem ([1]) that there exists some nonzero
γ̄ ∈ K such that

min
de∈Dūe

max
γ∈K

Ψ(de,γ) = min
de∈Dūe

Ψ(de, γ̄) = 0, (83)

with γ̄ = (ᾱ0,{ᾱ1
i }i∈E ,{ᾱ2

j } j∈I).

Since the constraint qualification (CQ) holds we can show that ᾱ0 = 0.

The adjoint equations have been derived for the functional F̄e
0 (u), however similar analy-

sis could be carried out for the functional

H(u) = F̄e
0 (ue)+ c

(
∑
i∈E

ᾱ1
i ḡ1

i (ue)+∑
j∈I

ᾱ2
j ḡ2

j(ūe)

)
,

and then we take α1
i = cᾱ1

i , i ∈ E, α2
j = cᾱ2

j , j ∈ I (notice that c > 0).

Since the obtained conclusion is for the problem (P) we need to apply the time transfor-
mation [0,1] � τ → t ∈ [0, t̄ f ] : t = t̄ f τ to arrive at the conditions (NC12).
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