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Preface

The history of mathematics at the Warsaw University of Technology goes back to 1826

when the Preparatory School for the Polytechnic Institute was founded thanks to the efforts

of Stanisław Staszic. Its first director became Kajetan Garbiński, a professor of mathematics.

The school was closed in 1831.

The Warsaw Polytechnic Institute named after Tsar Nicolas II was establihed in 1898.

Classes were conducted in Russian untill the outbreak of World War I. The Warsaw Univer-

sity of Technology started on its own in 1915. It was the first Polish technical university. All

this time at faculties of engineering there were divisions of mathematics which employed

famous professors including Georgij Voronoj, Kazimierz Żorawski, Witold Pogorzelski,

Stanisław Saks, Antoni Zygmund, Franciszek Leja, Władysław Nikliborc, Stefan Straszewicz

and Roman Sikorski.

In 1963 all the divisions of mathematics were joined together in order to establish the In-

stitute of Mathematics, which in 1975 became a part of the Faculty of Technical Physics and

Applied Mathematics. In 1999 the institute was transformed into the Faculty of Mathematics

and Information Sciences.

The aim of this monograph is to celebrate 20 years of the Faculty of Mathematics and

Information Science. We present a collection of research papers in mathematical analysis

and in partial differential equations written by mathematicians associated with our faculty.

The authors of the papers represent various generations from students to professors.
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Abstract: We study the asymptotic behaviour of the solution to coercive models of inelastic deformation
in quasistatic case. We look for conditions on the boundary data, the external force and nonlinearity such
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1. INTRODUCTION

The goal of the current paper is to study the inelastic deformation of a solid and its be-
haviour with specific conditions given for data in coercive quasistatic case. In this article
we study the class of models described by H-D. Alber in [1] and completely solved for ex-
istence and uniqueness of solutions by H-D. Alber and K. Chełmiński in [2]. We base on
those results and extend the results by some asymptotic properties. Very similar problem in
dynamical case with dumping added was previously approached by the author (see [3]).

1.1. MODEL SETTING

Let the considered body occupy the bounded domain Ω⊂R3 with a smooth boundary ∂Ω.
Let x ∈Ω denote a material point of the body while t ∈ (0,+∞) denotes time. Moreover, let
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denote s(3) the set of symmetrical 3×3 matrices with real entries. The main system studied
in this paper is in the following form:

divx T(x, t) = f (x, t),

T(x, t) = C(ε(u(x, t))−Bz(x, t)) ,

zt(x, t) ∈ g(−∇zψ(ε(x, t),z(x, t))).

(1)

The first equation in the system (1) represents the balance of forces where the function
T : Ω× (0,+∞)→ s(3) stands for the stress tensor, while f : Ω× (0,+∞)→ R3 is a given
density of volume forces. Since we consider a quasistatic case, we can neglect the in-
ertial term utt . The second equation gives us an elastic constitutive equation. Function
u : Ω× (0,+∞)→R3 is a displacement, while ε(u(x, t)) = 1

2

(
∇xu(x, t)+∇T

x u(x, t)
)

is a lin-
earised Cauchy strain tensor in the case of small deformations. Since ε(u) is the symmetric
part of a displacement’s gradient, it takes values in s(3). Function z : Ω× (0,+∞)→RN de-
scribes the inelastic part of the deformation and consists of the plastic part of the strain tensor
ε p : Ω× (0,+∞)→ s(3) (notice that s(3) is isomorphic with R6) and other internal parame-
ters z̃ : Ω× (0,+∞)→ RN−6, thus we can write z = (ε p, z̃). The operator B: RN → s(3) is
the projection of the RN vectors to their first six coordinates i.e. B(z) = B(ε p, z̃) = ε p. The
operator C : s(3)→ s(3) is linear, symmetric and positive definite and is called the elasticity
tensor, since the second equation is also called a generalisation of Hooke’s law. The dif-
ferential inclusion given in the system (1) describes an inelastic constitutive equation (flow
rule). In the current paper we consider a monotone model, thus we assume that the given
function g : D(g)→ 2R

N
is a maximal monotone multifunction, where D(g) ⊂ RN denotes

the domain of the operator g. We assume the free energy function ψ : s(3)×RN → R to be
given by

ψ(ε,z) =
1
2
C(ε−Bz) · (ε−Bz)+

1
2

Lz · z, (2)

where L is a positive definite symmetric matrix. It is worth to underline that the condition
L > 0 is equivalent to ψ > 0 and in such a case we say that the model is coercive. Addition-
ally, one can observe that the argument of the multifunction g can be expressed as

−∇zψ(ε(x, t),z(x, t)) = BT C(ε−Bz)−Lz = BT T−Lz.

We complete the considered system with the initial data

z(x,0) = z0(x), x ∈Ω (3)

and mixed boundary condition

u(x, t) = γD(x, t), (x, t) ∈ Γ0× [0,+∞),

T(x, t) ·n(x) = γN (x, t), (x, t) ∈ Γ1× [0,+∞),
(4)

where Γ0,Γ1 ⊂ ∂Ω are relatively open satisfying Γ0∩Γ1 = /0, Γ0∪Γ1 = ∂Ω andH2(Γ0)> 0
(byH2 we denote two-dimensional boundary measure).

10
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Remark 1. The only required initial condition is indeed the condition for the vector of inter-
nal variables z. The other conditions (i.e., T|t=0 =T0 and u|t=0 = u0) can be easily evaluated
through solving the linear elasticity problem for small deformation in the following form:

divx T0(x) = f (x,0),

T0(x) = C(ε(u0(x))−Bz0(x)) ,

u0(x) = γD(x,0), x ∈ Γ0,

T0(x) ·n(x) = γN (x,0), x ∈ Γ1.

(5)

Moreover, properties of the operator C give us that the problem (5) is elliptic with respect to
u(x,0), hence the following estimate holds

‖T0‖2 +‖u0‖1,2 �C
(‖ f (·,0)‖2 +‖Bz0‖2 +‖γD(·,0)‖1/2,2,Γ0 +‖γN (·,0)‖−1/2,2,Γ1

)
. (6)

Remark 2. In the inequality (6) and further in the paper we use the notation ‖ · ‖2 and
‖ · ‖1,2 for standard norms on L2(Ω) and H1(Ω) respectively, ‖ · ‖1/2,2,Γ0 for the norm of
Sobolev-Slobodeckij space H1/2(Γ0) while ‖ · ‖−1/2,2,Γ1 denotes the norm on H−1/2(Γ1) – a
dual space to H1/2(Γ0).

Remark 3. Properties of the free energy function ψ allow us to define a scalar product and
a norm on L2(Ω,s(3)×RN) as follows

〈(ε,z),(ε̄, z̄)〉ψ =
∫

Ω
[C(ε−Bz)] · (ε̄−B z̄)+(Lz) · z̄dx, (7)

‖(ε,z)‖2
ψ =

∫
Ω
[C(ε−Bz)] · (ε−Bz)+(Lz) · zdx. (8)

The norm defined above is equivalent to the standard norm defined on the Lebesgue space
L2(Ω,s(3)×RN) and is called the energetic norm. We will use it in future calculations since
we find it much more convenient in the considered model.

1.2. EXISTENCE OF SOLUTION TO THE CONSIDERED MODEL

The following existence theorem is proved in [2].

Theorem 4. Let us suppose that the boundary data γD,γN and the external force f possess
the regularity

f ∈W 2,∞(0,T ;L2(Ω;R3)), (9)

γD ∈W 3,∞(0,T ;H1/2(Γ0;R3)), γN ∈W 2,∞(0,T ;H−1/2(Γ1;R3)), (10)

11
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for all T > 0, and that to the initial data z0 ∈ L2(Ω;RN) there is z∗ ∈ L2(Ω;RN) such that

z∗(x) ∈ g
(
BT T0(x)−Lz0(x)

)
almost everywhere in Ω,

where (u0,T0) is a weak solution of the problem (5). If the considered model is of mono-
tone type with the maximal monotone constitutive function g : D(g)→ 2R

N
, which satisfies

0 ∈ g(0), and with a positive definite matrix L, then the system (1) with the boundary condi-
tion (4) possesses a global in time, unique solution

(u,T,z) ∈W 1,∞(0,T ;H1(Ω;R3)×L2(Ω;s(3)×RN)) for all T > 0.

1.3. MAIN RESULTS

Let us state the main assumption for the multifunction g:

There exists α > 0 such that for any w, w̄,ε, ε̄,z, z̄ satisfying w ∈ g(−∇zψ(ε,z)) and
w̄ ∈ g(−∇zψ(ε̄, z̄)) it holds true that:

(w− w̄) · [−∇zψ(ε,z)+∇zψ(ε̄, z̄)]� α [ψ(ε− ε̄),z− z̄)] (11)

or in other words

(w− w̄)·[BT C(ε−Bz)−Lz−BT C(ε̄−B z̄)+L z̄]

� α
[

1
2
C((ε− ε̄)−B(z− z̄)) · ((ε− ε̄)−B(z− z̄)+

1
2

L(z− z̄) · (z− z̄)
]
.

(12)

The conditions (11) and (12) are called the strong monotonicity (compare [4]).

Consider the following problem in Ω: for some f ∞ ∈ L2(Ω,R3), γ∞
D ∈ H1/2(Γ0;R3),

γ∞
N ∈ (H−1/2,R3) solve

−divx C(ε(u∞(x))−Bz∞(x)) = f ∞(x),

0 ∈ g(−∇zψ(ε∞(x),z∞(x))) ,
(13)

with boundary conditions:

u∞ = γ∞
D on Γ0,

C(ε(u∞)−Bz∞) ·n = γ∞
N on Γ1.

(14)

12
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Remark 5. In general we need to assume the existence and the uniqueness of solution for
the problem (13, 14), however in some special cases they can be proved: From the sec-
ond equation, using the property (11) of g and the definition of the free energy ψ , we can
find z∞ = (BT CB+L)−1 BT ε(u∞). Inserting this expression into the first equation we ob-
tain a linear equation on u∞ with the right hand side f ∞. If we additionally assume, that
BT CBL = LBT CB then this equation becomes an elliptic one. This assumption is fulfilled
if, for instance, z = ε p and Lε p = cε p, where c ∈ R is constant (this is the case of the stan-
dard internal coercive approximation, see e.g. the model of Melan-Prager). Considering the
boundary conditions of the mixed type we obtain a unique solution to the discussed problem.

Theorem 6 (Time independent problem). Let (u,z) be the solution of the problem (1,3,10)
according to Theorem 4. Assume that the multifunction g satisfies condition (11). Let the
function f satisfy the following conditions

lim
t→∞

‖ f (t)− f ∞‖2 = 0,

lim
t→∞

‖ ft(t)− f ∞
t ‖2 = lim

t→∞
‖ ft(t)‖2 = 0.

Moreover let us assume that the boundary conditions do not depend on time and satisfy:

γD(x, t) = γ∞
D(x),

γN (x, t) = γ∞
N (x).

Then the following convergence holds true:

lim
t→∞

‖(ε(u(t)−u∞),z(t)− z∞)‖ψ = 0.

Theorem 7 (Time dependent problem). Let (u,z) and (ū, z̄) be the solutions of the problem
(1,3,10) according to Theorem 4 with the same boundary data (10) but with different initial
conditions z0 and z̄0 respectively and different volume forces functions f and f̄ respectively.
Let the multifunction g satisfy condition (11). If volume forces functions satisfy

lim
t→∞

‖ f (t)− f̄ (t)‖2 = 0,

lim
t→∞

‖ ft(t)− f̄t(t)‖2 = 0,

then
lim
t→∞

‖(ε(t)− ε̄(t),z(t)− z̄(t))‖ψ = 0, (15)

where we denote ε̄ = ε(ū).

Remark 8. Since u and u∞ from Theorem 6 as well as u and ū from Theorem 7 satisfy the
same boundary condition, the Korn inequality and properties of the energy norm lead us to

lim
t→∞

‖u(t)−u∞‖1,2 = 0,

lim
t→∞

‖u(t)− ū(t)‖1,2 = 0.

13
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2. PROOFS OF MAIN THEOREMS

Proof of Theorem 6. Let us denote ε∞ = ε(u∞) and T∞ = C(ε∞−Bz∞). First, we estimate
the energetic norm of the following difference (ε − ε∞,z− z∞). To do it we integrate the
energetic norm with respect to time:

1
2

d
dt
‖(ε− ε∞,z− z∞)‖2

ψ

=
1
2

d
dt

(∫
Ω
[C((ε− ε∞)−B(z− z∞))] · ((ε− ε∞)−B(z− z∞))

+(L(z− z∞)) · (z− z∞)dx

)

=
∫

Ω
[C((ε− ε∞)−B(z− z∞))] ·

(
d
dt
(ε− ε∞)

)
dx

−
∫

Ω
(zt− z∞

t ) · [−∇zψ(ε,z)+∇zψ(ε∞,z∞)]dx

=
∫

Ω
[C((ε− ε∞)−B(z− z∞))] · (ε(ut)− ε(u∞

t ))dx

−
∫

Ω
(zt− z∞

t ) · [−∇zψ(ε,z)+∇zψ(ε∞,z∞)]dx.

Integrating by parts and using (1) and (13) we get

1
2

d
dt
‖(ε− ε∞,z− z∞)‖2

ψ =
∫

Ω
(ut−u∞

t ) · ( f − f ∞)dx+
∫

∂Ω
(ut−u∞

t ) · (T−T∞)ndS

−
∫

Ω
(zt− z∞

t ) · [−∇zψ(ε,z)+∇zψ(ε∞,z∞)]dx.

Using the assumption given for g and the special form of boundary conditions we get

1
2

d
dt
‖(ε− ε∞,z− z∞)‖2

ψ �
∫

Ω
(ut−u∞

t ) · ( f − f ∞)dx−α‖(ε− ε∞,z− z∞)‖2
ψ .

We multiply both sides of the inequality above by e2αt and we integrate with respect to t to
obtain

1
2

e2αt‖(ε(t)− ε∞,z(t)− z∞)‖2
ψ

� 1
2
‖(ε(0)− ε∞,z(0)− z∞)‖2

ψ +
∫ t

0
e2αs

∫
Ω
(ut−u∞

t ) · ( f − f ∞)dxds.

14
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Integration by parts gives us

1
2

e2αt‖(ε(t)− ε∞,z(t)− z∞)‖2
ψ � 1

2
‖(ε(0)− ε∞,z(0)− z∞)‖2

ψ

−
∫

Ω
(u(0)−u∞) · ( f (0)− f ∞)dx+ e2αt

∫
Ω
(u(t)−u∞)) · ( f (t)− f ∞)dx

−
∫ t

0
e2αs

∫
Ω
(u−u∞) · [( ft− f ∞

t )+2α( f − f ∞)]dxds. (16)

We are going to use Lemma 9 proved in Appendix, hence, using coercivity of the model, the
Korn inequality and the assumption that α > 0, we estimate∫

Ω
(u(t)−u∞) · ( f (t)− f ∞)dx � ‖u(t)−u∞‖2‖ f (t)− f ∞‖2

�C‖(ε(t)− ε∞,z(t)− z∞)‖ψ‖ f (t)− f ∞‖2

� 1
4
‖(ε(t)− ε∞,z(t)− z∞)‖2

ψ +C2‖ f (t)− f ∞‖2
2. (17)

We insert (17) into (16) and subtract the term 1
4e2αt‖(ε(t)−ε∞,z(t)−z∞)‖2

ψ from both sides:

1
4

e2αt‖(ε(t)− ε∞,z(t)− z∞)‖2
ψ

� 1
2
‖(ε(0)− ε∞,z(0)− z∞)‖2

ψ −
∫

Ω
(u(0)−u∞) · ( f (0)− f ∞)dx

+
(
Ceαt‖ f (t)− f ∞‖2

)2−
∫ t

0
e2αs

∫
Ω
(u−u∞) · [( ft− f ∞

t )+2α( f − f ∞)]dxds.

We multiply by 2 and do further estimations

1
2

e2αt‖(ε(t)− ε∞,z(t)− z∞)‖ψ)
2 �

(√
2Ceαt‖ f (t)− f ∞‖2

)2
+

1
2

K2

+2
∫ t

0
e2αs‖u(s)−u∞‖2 (‖ f (s)− f ∞‖2 +2α‖ ft(s)− f ∞

t ‖2)ds,

where

K =
√

2
√
‖(ε(0)− ε∞,z(0)− z∞)‖2

ψ +2‖u(0)−u∞‖2 · ‖ f (0)− f ∞‖2.

We denote (ε−ε∞,z−z∞) = (ε∗,z∗) and once again we use coercivity and the Korn inequal-
ity to obtain

1
2

e2αt‖(ε∗,z∗)‖ψ)
2 �

(√
2Ceαt‖ f (t)− f ∞‖2

)2
+

1
2

K2

+C1

∫ t

0
e2αs‖(ε∗,z∗)‖ψ (‖ f (s)− f ∞‖2 +2α‖ ft(s)− f ∞

t ‖2)ds. (18)

15
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We apply Lemma 9 to (18)

eαt‖(ε∗,z∗)‖ψ �
√

K2 +4C2‖ f (0)− f ∞‖2
2 +2C

∫ t

0

∣∣∣∣ d
dt

(eαs‖ f (s)− f ∞‖2)

∣∣∣∣ds

+C1

∫ t

0
eαs (‖ ft(s)− f ∞

t ‖2 +2α‖ f (s)− f ∞‖2)ds.

Since ∣∣∣∣ d
dt
‖ f (s)− f ∞‖2

∣∣∣∣� ‖ ft(s)− f ∞
t ‖2,

we collect like terms to get

eαt‖(ε∗,z∗)‖ψ �
√

K2 +4C2‖ f (0)− f ∞‖2
2

+D
∫ t

0
eαs‖ ft(s)− f ∞

t ‖2 ds+αD1

∫ t

0
eαs‖ f (s)− f ∞‖2 ds.

Division by eαt leads to

‖(ε(u(t)−u∞),z(t)− z∞)‖ψ �e−αt
√

K2 +4C2‖ f (0)− f ∞‖2
2 +D

∫ t

0
eα(s−t)‖ ft(s)− f ∞

t ‖2 ds

+αD1

∫ t

0
eα(s−t)‖ f (s)− f ∞‖2 ds.

Let us observe that, by assumptions made about the volume force, for any δ > 0 there exists
N > 0 such that

‖ f (t)− f ∞‖2 �
δ

4D1
,

‖ ft(t)− f ∞
t ‖2 = ‖ ft(t)‖2 �

αδ
4D

for t > N. Next, we can choose t0 � N such that

√
K2 +4C2‖ f (0)− f ∞‖2

2 +D
∫ N

0
eαs‖ ft(s)− f ∞

t ‖2 ds+αD1

∫ N

0
eαs‖ f (s)− f ∞‖2 ds

� eαt0 δ
2
.

16
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Therefore, for t > t0

‖(ε(u(t)−u∞),z(t)− z∞)‖ψ

�e−αt
√

K2 +4C2‖ f (0)− f ∞‖2
2

+D
∫ N

0
eα(s−t)‖ ft(s)− f ∞

t ‖2 ds+αD1

∫ N

0
eα(s−t)‖ f (s)− f ∞‖2 ds

+D
∫ t

N
eα(s−t)‖ ft(s)− f ∞

t ‖2 ds+αD1

∫ t

N
eα(s−t)‖ f (s)− f ∞‖2 ds

�δ
2
+

αδ
2

∫ t

N
eα(s−t) ds � δ .

Since once again we are going to work with difference of solutions the method used to
prove Theorem 7 is very similar to the one used above, thus we just present the main points.

Proof of Theorem 7. As in the previous proof, we estimate the energetic norm of the differ-
ence (u− ū,z− z̄). Hence similarly as in the proof of Theorem 6 we get

1
2

d
dt
‖(ε− ε̄,z− z̄)‖2

ψ =
∫

Ω
(ut− ūt) · ( f − f̄ )dx+

∫
∂Ω

(ut− ūt) · (T− T̄ )ndS

−
∫

Ω
(zt− z̄t) · [−∇zψ(ε,z)+∇zψ(ε̄, z̄)]dx.

Then, using the same reasoning as in the proof of Theorem 6, we obtain:
1
2

e2αt‖(ε(t)− ε̄(t),z(t)− z̄(t))‖ψ)
2

�
(√

2Ceαt‖ f (t)− f̄ (t)‖2

)2
+

1
2

K2

+2
∫ t

0
e2αs‖u(s)− ū(s)‖2

(‖ f (s)− f̄ (s)‖2 +2α‖ ft(s)− f̄t(s)‖2
)

ds,

where

K =
√

2
√
‖(ε(0)− ε̄(0),z(0)− z̄(0))‖2

ψ +2‖u(0)− ū(0)‖2 · ‖ f (0)− f̄ (0)‖2.

We denote (ε− ε̄,z− z̄) = (ε∗,z∗) and f − f̄ = f ∗ and by Lemma 9 we estimate

‖(ε∗,z∗)‖ψ � e−αt
√

K2 +4C2‖ f ∗(0)‖2
2

+D
∫ t

0
eα(s−t)‖ f ∗t (s)‖2 ds+αD1

∫ t

0
eα(s−t)‖ f ∗(s)‖2 ds.

The concluding argument from the proof of Theorem 6 completes the proof.

17
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APPENDIX

We prove a Gronwall type lemma, as it was used in Theorem 6.

Lemma 9. Let m, f , ft ∈ L1(0,T ;R) be given functions such that m � 0 and let a � 0 be
a given constant. Let φ : [0,T ]→ R be a continuous function and such that

1
2

φ 2(t)� 1
2

a2 + f 2(t)+
∫ t

0
m(s)φ(s)ds ∀t ∈ [0,T ].

Then it holds true that

|φ |�
√

a2 +2 f 2(0)+
√

2
∫ t

0
| ft(s)|ds+

∫ t

0
m(s)ds ∀t ∈ [0,T ].

Proof. For any ε > 0 we introduce an auxiliary function ψε by the following formula:

ψε(t) =
1
2
(a+ ε)2 + | f (t)|2 +

∫ t

0
m(s)φ(s)ds.

It is easy to see that ψε(t)� 1
2 |φ(t)|2. Differentiation of ψε with respect to time gives us

ψ ′ε(t) =
d
dt

(
f 2(t)

)
+m(t)φ(t)� d

dt

(
f 2(t)

)
+m(t)

√
2
√

ψε(t).

Notice that ψε(t)≥ 1
2ε2 > 0 and

d
dt

(√
ψε(t)

)
=

ψ ′ε(t)
2
√

ψε(t)
� 1√

2
m(t)+

f (t) f ′(t)√
ψε(t)

.

The above estimation holds true for almost all t ∈ (0,T ). Observe, that the function f f ′√ψε

integrable on [0,T ]. It follows from the assumption for the function f and the definition of
the function ψε . Integration with respect to t leads to√

ψε(t)�
√

ψε(0)+
1√
2

∫ t

0
m(s)ds+

∫ t

0

f (s) f ′(s)√
ψε(s)

ds

�
√

ψε(0)+
1√
2

∫ t

0
m(s)ds+

∫ t

0

| f (s)| · | f ′(s)|√
ψε(s)

χ{t∈R+ : f (t)�=0}(s)ds(
we use ψε(t)� | f (t)|2

)
�
√

1
2
(a+ ε)2 + f 2(0)|+ 1√

2

∫ t

0
m(s)ds+

∫ t

0
| f ′(s)|ds.

It follows easily that

|φ |�
√

2
√

ψε(t)�
√

(a+ ε)2 +2 f 2(0)+
∫ t

0
m(s)ds+

√
2
∫ t

0
| ft(s)|ds

for any t ∈ [0,T ] and ε > 0. We pass to the limit with ε→ 0+, which completes the proof.
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1. INTRODUCTION

In this article we investigate a local well-posedness of the Norton–Hoff model with an iso-
tropic hardening in a Cosserat media. The general Cosserat model was introduced by Co-
sserat brothers in [13]. K. Chełmiński and P. Neff presented different cases of the model
in the introduction to [20]. They introduced infinitesimal elastic and elasto-plastic Cosserat
models there. The purely elastic model can be obtained by dividing the macroscopic dis-
placement gradient ∇u into infinitesimal microrotation and an infinitesimal non-symmetric
micropolar stretch tensor ē = ∇u−A. Then, the complete theory is obtained by a variational
principle. The elasto-plastic case is an extension of the purely elastic model. This extension
itself is non-dissipative. Its basic idea is dividing the total micropolar stretch into elastic and
plastic part and assuming that microrotational effects remain purely elastic.

The Norton-Hoff model is an issue from the theory of elasto-plastic deformations. It
has been described in [26]. A mathematical analysis of the model can be found in [3] and
[29]. The Norton–Hoff model with isotropic hardening is the Norton–Hoff model with one
more scalar function, i.e. the so-called isotropic hardening. The model is well-posed. It was
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shown in [5]. Said model in different cases has been studied in [11, 12, 15]. Several addi-
tional models in the theory of inelastic deformations are listed in [1].

In the paper the elasto-plastic Cosserat model connected with the Norton-Hoff model with
isotropic hardening is studied. The main goal of the article is to show a well-posedness of
the problem. In the article [4] it is proven that if the Cosserat effect vanishes, the issue
approximates Norton-Hoff with isotropic hardening model. The Prandtl-Reuss model and
similar issues are investigated in [6]. The Cosserat elasto-plastic model is also studied in
[7] and [22]. The paper [21] is devoted to the study of dynamic Cosserat models. See also
article [8], where a poroplasticity model with Cosserat effects is investigated. The linear
elastic Cosserat model is considered in [16, 17, 23, 24, 25]. In [9, 10] the authors study the
Armstrong–Frederick model with Cosserat effects. Some results on thermo-visco-elasticity
for Norton-Hoff model with Cosserat effects are to be found in paper [18].

2. THE PROBLEM FORMULATION

We shall use the notation specified in Section 3. Let Ω ⊂ R3 be a bounded domain with
a smooth boundary and let T > 0. In order to describe a quasi-static deformation of an inelas-
tic body with microrotations and with isotropic hardening we have to find the displacement
vector u : Ω× [0,T ]→R3, the microrotation matrix A : Ω× [0,T ]→ so(3), the plastic defor-
mation tensor εp : Ω× [0,T ]→ Sym(3) and the isotropic hardening y : Ω× [0,T ]→ R such
that

divσ =− f , (1a)
σ = 2μ(ε− εp)+2μc(skew(∇u)−A)+λ tr[ε] · I, (1b)

−lcΔaxl(A) = μc axl(skew(∇u)−A), (1c)

ε̇p = F(TE ,− γ
α y), ẏ = g(TE ,− γ

α y), (1d)
TE = 2μ(ε− εp), (1e)

u|∂Ω = ud, A|∂Ω = Ad, εp(0) = ε0
p, y(0) = y0. (1f)

Here, ε = sym(∇u) denotes the infinitesimal elastic strain tensor. The numbers λ , μ are the
positive Lame constants, μc is the Cosserat couple modulus and lc = μL2

c > 0 is a material
parameter, where Lc with the units of length defines an internal length scale. The con-
stants γ and α are positive. The functions ud, Ad are given Dirichlet boundary data and
ε0

p and y0 are given initial values and function f describes external body forces acting on
the material. The functions F and g are given by F(E,x) = (|devE|+αx− k)r

+
devE
|devE| and

g(E,x) = α(|devE|+αx−k)r
+ for (E,x)∈ Sym(3)×R, where r > 1. We will see in Propo-

sition 4 that (F,g) is a monotone field on Sym(3)×R.

Let us see that the initial values of εp,y are explicitly given by (1f), but the initial values
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of u and of A seem to be unknown. However, let us put t = 0 to (1a), (1b), (1c) and to (1f)

divσ(0) =− f (0),

σ(0) = 2μ(ε(0)− ε0
p)+2μc(skew(∇u(0))−A(0))+λ tr[ε(0)] · I,

−lcΔaxl(A(0)) = μc axl(skew(∇u(0))−A(0)),
u(0) = ud(0), A(0) = Ad(0).

(2)

The above equation has a unique solution u(0) ∈ H1(Ω,R3) and A(0) ∈ H2(Ω,so(3)), what
follows from the Lax-Milgram Theorem and theorems about regularity of solutions for elli-
ptic equations (see [14]). Moreover, u(0) and A(0) satisfy the following inequality

(‖u(0)‖H1(Ω) +‖A(0)‖H2(Ω))≤C(‖ f (0)‖H−1(Ω) +‖ud(0)‖
H

1
2 (Ω)

+‖Ad(0)‖
H

3
2 (Ω)

) , (3)

where the constant C depends only on Ω and the parameters of system (1).

In the paper we want to investigate the existence and the uniqueness of solutions of prob-
lem (1). Thus, the main purpose of the article is to prove the following theorem.

Theorem 1. Let us assume that

f ∈W 2,∞([0,T ],L2(Ω,R3)), ud ∈W 3,∞([0,T ], H
1
2 (∂Ω,R3)),

Ad ∈W 3,∞([0,T ], H
3
2 (∂Ω,so(3))), ε0

p ∈ L2(Ω,Sym(3)), y0 ∈ L2(Ω),

F(2μ(ε(u(0))− ε0
p),− γ

α y0) ∈ L2(Ω, Sym(3)) and g(2μ(ε(u(0))− ε0
p),− γ

α y0) ∈ L2(Ω),
where u(0) and A(0) are defined by system (2). Then there exists unique weak solution
of (1) such that

u ∈W 1,∞([0,T ],H1(Ω,R3)), A ∈W 1,∞([0,T ],H2(Ω,so(3))),

εp ∈W 1,∞([0,T ],L2(Ω,Sym(3))), y ∈W 1,∞([0,T ], L2(Ω)).

3. PRELIMINARIES AND NOTATIONS

In this section we shall recall some basic facts used in this paper and make some remarks
about the notation.

We denote by R3×3 the set of real 3×3 matrices. The sets Sym(3) and so(3) are defined
as follows:

Sym(3) =
{

A ∈ R3×3 : AT = A
}

and so(3) =
{

A ∈ R3×3 : AT =−A
}
.

For A ∈ R3×3 we define the symmetric part of A as

sym(A) =
1
2
(
A+AT) ,
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and the skew-symmetric part of a matrix as

skew(A) =
1
2
(
A−AT) .

It is easy to see that A = sym(A)+ skew(A), sym(A) ∈ Sym(3) and skew(A) ∈ so(3). Let
B ∈ so(3), then there exist real numbers a, b, c such that

B =

⎡⎣ 0 a b
−a 0 c
−b −c 0

⎤⎦ .

We define axl(B) = (−c, b, −a). Let A ∈ Sym(3). We define the deviator of A as

devA = A− 1
3

tr[A]I ,

where tr[A] is the trace of A and it is defined by tr[A] = ∑3
i=1 A(i, i), and I is the identity

matrix. It is easy to see that devA is a projection of A onto symmetric matrices with trace
equal to zero. Now, let Ω⊂ R3 be an open set. Let us introduce the space L2

div(Ω):

L2
div(Ω) = {u ∈ L2(Ω,R3) : divu ∈ L2(Ω)} ,

where div means the weak divergence. In this space the norm can be defined as follows

‖u‖L2
div(Ω) = ‖u‖L2(Ω) +‖div u‖L2(Ω) .

The subsequent fact holds.

Theorem 2. Let Ω⊂R3 be an open, bounded set with the boundary of C1-class. Then, there
exists a bounded linear operator γ : L2

div(Ω)→ H− 1
2 (∂Ω) such that

(i)
‖γu‖

H−
1
2 (∂Ω)

≤C‖u‖L2
div(Ω) for u ∈ L2

div(Ω) ,

(ii)
γu = u ·n|∂Ω for u ∈C(Ω̄) ,

where n denotes the exterior unit normal vector to ∂Ω.

Moreover, if w ∈H1(Ω) and w|∂Ω = φ (in the sense of traces, see [14]), then for u ∈ L2
div(Ω)

the following equality is satisfied:

〈γu,φ〉=
∫

Ω
u ·∇wdx+

∫
Ω

div uwdx . (4)

The condition (ii) from Theorem 2 and (4) justify the notation γu for u ∈ L2
div(Ω) as u ·n

and 〈γu, φ〉 for φ ∈ H
1
2 (∂Ω) as

∫
∂Ω u · nφ dS. The details and the proof of Theorem 2 are

given in [28].

In the article we use some basic results of functional analysis. These facts can be found
in [19] and [27]. The following lemma is well-known. We include it here with a proof.
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Lemma 3. For v ∈ H1
0 (Ω,R3) the following equality

‖ rot(v)‖2
L2(Ω) +‖div(v)‖2

L2(Ω) = ‖∇v‖2
L2(Ω)

holds.

Proof. Let v ∈C∞
c (Ω,R3). We have

rot(rot(v)) =−Δv+∇div(v). (5)

We also know that for an arbitrary w ∈C∞
c (Ω,R3) the following equality∫

Ω
w · rot(v)dx =

∫
Ω

rot(w) · vdx

holds. Equality (5) gives us∫
Ω

rot(rot(v)) · vdx =−
∫

Ω
Δv · vdx+

∫
Ω

∇div(v) · vdx.

Integrating by parts we get∫
Ω
| rot(v)|2dx =

∫
Ω
|∇v|2dx−

∫
Ω
(div(v))2dx.

This proves the lemma for v ∈ C∞
c (Ω,R3). The fact that the space C∞

c (Ω,R3) is dense
in H1

0 (Ω,R3) completes the proof.

Proposition 4. A vector field (F,g) : Sym(3)×R→ Sym(3)×R given by

F(E,x) = (|devE|+αx− k)r
+

devE
|devE| , g(E,x) = α(|devE|+αx− k)r

+

is a monotone vector field.

Proof. Let T1,T2 ∈ Sym(3) and y1,y2 ∈ R. Then we have

(F(T1,y1)−F(T2,y2),g(T1,y1)−g(T2,y2)) · (T1−T2,y1− y2)

=

(
(devT1 +αy1− k)r

+
devT1

|devT1| − (devT2 +αy2− k)r
+

devT2

|devT2|
)
(T1−T2)

+(α(devT1 +αy1− k)r
+−α(devT2 +αy2− k)r

+)(y1− y2)

= (devT1 +αy1− k)r
+

devT1 ·T1

|devT1| − (devT1 +αy1− k)r
+

devT1 ·T2

|devT1|
− (devT2 +αy2− k)r

+
devT2 ·T1

|devT2| +(devT2 +αy2− k)r
+

devT2 ·T2

|devT2| +
+(α(devT1 +αy1− k)r

+−α(devT2 +αy2− k)r
+)(y1− y2)

≥ (devT1 +αy1− k)r
+|devT1|− (devT1 +αy1− k)r

+|devT2|
− (devT2 +αy2− k)r

+|devT1|+(devT2 +αy2− k)r
+|devT2|

+((devT1 +αy1− k)r
+− (devT2 + y2− k)r

+)(αy1−αy2)

= ((|devT1 +αy1− k)r
+− (|devT2|+αy2− k)r

+)(|devT1|+αy1− (|devT2|+αy2))≥ 0,

where the last inequality holds because of monotonicity of (·− k)r
+ on R.
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4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We will prove that problem (1) has a unique weak solution. First, we will introduce
a definition of a weak solution of the system.

Definition 5. We say that u ∈W 1,∞((0,T ),H1(Ω,R3)), A ∈W 1,∞((0,T ),H2(Ω,so(3,R))),
εp ∈W 1,∞((0,T ),L2(Ω,Sym(3))) and y ∈W 1,∞((0,T ), L2(Ω)) are a weak solution of sys-
tem (1) if a weak divergence

div(σ) = div(2μ(ε− εp)+2μc(skew(∇u)−A)+λ tr[ε] · I) ∈ L∞((0,T ), L2(Ω,R3)),

equations in 1 are satisfied almost everywhere in Ω× [0,T ] and the initial-boundary condi-
tions are satisfied in the sense of traces.

4.1. REGULARIZED PROBLEM

A field (F,g) is monotone, so it can be approximated by a Lipschitz function so-called
Yosida approximation (see [2]). Let (Fη ,gη) be a Yosida approximation of (F,g). In (1d)
we replace F and g with Fη and gη . Thus, we get the regularized problem

divση =− f , (6a)
ση = 2μ(εη − εη

p )+2μc(skew(∇uη)−Aη)+λ tr[εη ] · I, (6b)

−lcΔaxl(Aη) = μc axl(skew(∇uη)−Aη), (6c)

ε̇η
p = Fη(T η

E ,− γ
α yη), ẏη = gη(T η

E ,− γ
α yη), (6d)

T η
E = 2μ(εη − εη

p ), (6e)

uη |∂Ω = ud, Aη |∂Ω = Ad, εη
p (0) = ε0

p, yη(0) = y0. (6f)

First, we will show the well-posedness of the above problem and then we will pass to the
limit as η → 0+.

Theorem 6. Let us assume that

f ∈C([0,T ],L2(Ω,R3)), ud ∈C([0,T ],H
1
2 (∂Ω,R3)),

Ad ∈C([0,T ],H
3
2 (∂Ω,so(3,R))), ε0

p ∈ L2(Ω,Sym(3)), y0 ∈ L2(Ω),

then problem (6) has a unique solution

uη ∈C([0,T ],H1(Ω,R3)), Aη ∈C([0,T ],H2(Ω,so(3,R)),

εη
p ∈C1([0,T ],L2(Ω,Sym(3)), yη ∈C1([0, T ],L2(Ω)).

26



Well-posedness of the Norton–Hoff plasticity model

Moreover, if we assume in addition that

f ∈C1([0,T ],L2(Ω,R3)), ud ∈C1([0,T ],H
1
2 (∂Ω,R3)),

Ad ∈C1([0, T ], H
3
2 (∂Ω,so(3,R)),

(7)

then uη ∈C1([0,T ],H1(Ω,R3)) and Aη ∈C1([0, T ], H2(Ω,so(3,R)).

Proof. For simplicity we omit η in the proof. Let X=C([0,T ],L2(Ω,Sym(3))). We define
a mapping P : X→ X. Let ε ∈ X. We solve the system of ordinary differential equations

ε̇p = Fη(2μ(ε− εp),− γ
α y), εp(0) = ε0

p, (8)

ẏ = gη(2μ(ε− εp),− γ
α y), y(0) = y0. (9)

We get εp and y from this system. Then, we solve the following system with these functions

divσ =− f ,
σ = 2μ(ε(u)− εp)+2μc(skew(∇u)−A)+λ tr[ε(u)] · I,

−lcΔaxl(A) = μc axl(skew(∇u)−A),
u|∂Ω = ud, A|∂Ω = Ad.

(10)

The existence of A and u follows from the Lax–Milgram theorem. Finally, we define P(ε)
as ε(u).

Now, we show that P is a contraction for sufficiently small T > 0. Let ε1,ε2 ∈ X. Let
ε1

p,y
1,u1,A1 be functions which we get defining P(ε1) and let ε2

p,y
2,u2,A2 be analogous

functions for ε2. System (10) yields∫
Ω

2μ(ε(u1−u2)− (ε1
p− ε2

p)) · ε(u1−u2)+2μc|skew(∇u1−∇u2)− (A1−A2)|2

+ lc|∇A1−∇A2|2 +λ
2

div(u1−u2)dx = 0.

Therefore, we have ∫
Ω
|ε(u1−u2)|2dx≤

∫
Ω

ε(u1−u2) · (ε1
p− ε2

p)dx. (11)

Otherwise, equations (9) result us

‖y1(t)− y2(t)‖L2(Ω) ≤
∫ t

0
‖gη(2μ(ε1− ε1

p),− γ
α y1)−gη(2μ(ε2− ε2

p),− γ
α y2)‖L2(Ω)dτ

≤CT (‖ε1− ε2‖C([0,T ],L2(Ω,Sym(3))) +‖ε1
p− ε2

p‖C([0,T ],L2(Ω,Sym(3))) +‖y1− y2‖C([0,T ],L2(Ω)))

for 0≤ t ≤ T . Putting T < 1
C we get

‖y1−y2‖C([0,T ],L2(Ω))≤
CT

1−CT
(‖ε1−ε2‖C([0,T ],L2(Ω,Sym(3)))+‖ε1

p−ε2
p‖C([0,T ],L2(Ω,Sym(3)))) .

(12)
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On the other hand, equation (8) yields

‖ε1
p(t)− ε2

p(t)‖L2(Ω,Sym(3))

≤
∫ t

0
‖Fη(2μ(ε1− ε1

p),− γ
α y1)−Fη(2μ(ε2− ε2

p),− γ
α y2)‖L2(Ω,Sym(3))dτ

≤CT (‖ε1− ε2‖C([0,T ],L2(Ω,Sym(3))) +‖ε1
p− ε2

p‖C([0,T ],L2(Ω,Sym(3)))

+‖y1− y2‖C([0,T ],L2(Ω)))

≤ CT
1−CT

(‖ε1− ε2‖C([0,T ],L2(Ω,Sym(3))) +‖ε1
p− ε2

p‖C([0,T ],L2(Ω,Sym(3)))). (13)

We used here inequality (12). Inequality (13) gives us

‖ε1
p− ε2

p‖C([0,T ],L2(Ω,Sym(3))) ≤
CT

1−2CT
‖ε1− ε2‖C([0,T ],L2(Ω,Sym(3))), (14)

when we take T < 1
C2 . Now, inequality (11) yields

‖ε(u1)− ε(u2)‖C([0,T ],L2(Ω,Sym(3))) ≤ ‖ε1
p− ε2

p‖C([0,T ],L2(Ω,Sym(3))),

which with (14) results in

‖ε(u1)− ε(u2)‖C([0,T ],L2(Ω,Sym(3))) ≤
CT

1−2CT
‖ε1− ε2‖C([0,T ],L2(Ω,Sym(3))).

Finally, we see that P is Lipshitz function. If we take T < 1
3C , it will be a contraction.

From the Banach fixed-point theorem we get that (6) possesses a unique solution on [0,T ].
Because T > 0 does not depend on initial values, we can extend the solution on [0,T ] for an
arbitrary T .

We have to show the last part of the theorem. Let us assume (7) and let û and Â be
a solution of the system

div σ̂ =− ḟ ,

σ̂ = 2μ(ε(û)− ε̇p)+2μc(skew(∇û)− Â)+λ tr[ε(û)] · I,
−lcΔaxl(Â) = μc axl(skew(∇û)− Â),

û|∂Ω = u̇d, Â|∂Ω = Ȧd.

(15)

Now, let us take 0 ≤ t ≤ T and sufficiently small h ∈ R. System (15) is analogous to sys-
tem (2), so we have inequality similar to (3)∥∥∥∥u(t +h)−u(t)

h
− û(t)

∥∥∥∥
H1(Ω,R3)

+

∥∥∥∥A(t +h)−A(t)
h

− Â(t)
∥∥∥∥

H2(Ω,so(3))

≤C
(∥∥∥∥ f (t +h)− f (t)

h
− ḟ (t)

∥∥∥∥
L2(Ω,R3)

+

∥∥∥∥εp(t +h)− εp(t)
h

− ε̇p(t)
∥∥∥∥

L2(Ω,Sym(3))

+

∥∥∥∥ud(t +h)−ud(t)
h

− u̇d(t)
∥∥∥∥

H
1
2 (∂Ω,R3)

+

∥∥∥∥Ad(t +h)−Ad(t)
h

− Ȧd(t)
∥∥∥∥

H
3
2 (∂Ω,so(3))

)
.

Then, we pass to the limit with h→ 0. It finishes the proof.
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4.2. ESTIMATION OF ENERGY

The energy of system (1) is a very important tool in studying this problem. We define it
as follows

E(u,ε,εp,A,y)(t)

=
∫

Ω
μ|ε− εp|2 + 1

2
λ tr[ε]2 +μc|skew(∇u)−A|2 +2lc|∇axl(A)|2 + 1

2
γ
α

y2dx.

Theorem 7. There exists a constant C > 0 such that for all u ∈ H1
0 (Ω,R3), y ∈ L2(Ω),

εp ∈ L2(Ω,Sym(3)), A ∈ H1
0 (Ω, so(3)) the inequality

E(u,ε,εp,A,y)≥C(‖u‖2
H1(Ω) +‖A‖2

H1(Ω)) (16)

holds. Moreover, if u ∈ {v ∈ H1(Ω,R3) : v|∂Ω = ud}, where ud ∈ H
1
2 (∂Ω,R3), and

A ∈ {B ∈ H1(Ω,so(3)) : B|∂Ω = Ad}, where Ad ∈ H
1
2 (Ω,so(3)), then there exists C1 > 0

such that the inequality

E(u,ε,εp,A,y)+C1 ≥C(‖u‖2
H1(Ω) +‖A‖2

H1(Ω))

is satisfied.

Proof. Let u ∈ H1
0 (Ω,R3), A ∈ H1

0 (Ω, so(3)), εp ∈ L2(Ω,Sym(3)), y ∈ L2(Ω), then we
have

E(u,ε,εp,A,y)(t)≥
∫

Ω

1
2

λ tr[ε]2 +μc|skew(∇u)−A|2 +2lc|∇axl(A)|2dx

=
∫

Ω

1
2

λ (divu)2 +μc| rotu|2−2μc skew(∇u) ·A+μc|A|2 + lc|∇A|2dx

≥
∫

Ω

1
2

λ (divu)2 +
1
2

μc| rotu|2−μc|A|2 + lc|∇A|2dx.

Now, we use the Poincaré inequality and Lemma 3

E(u,ε,εp,A,y)(t)≥min
(1

2λ , 1
2 μc
)‖∇u‖2

L2(Ω)−μcCΩ‖∇A‖2
L2(Ω) + lc‖∇A‖2

L2(Ω).

It results in

(1+
μcCΩ
2lc

)E(u,ε,εp,A,y)(t)≥min
(1

2λ , 1
2 μc, lc

)
(‖∇u‖2

L2(Ω) +‖∇A‖2
L2(Ω)).

This finishes the proof of inequality (16).

Let v ∈ H1(Ω,R3) and B ∈ H1(Ω,so(3)) be such that v|∂Ω = ud} and B|∂Ω = Ad . Then,
from the proven part of the theorem we have

E(u− v,ε,εp,A−B,y)(t)≥C(‖u− v‖2
H1(Ω) +‖A−B‖2

H1(Ω)).

This immediately completes the proof.
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We estimate the energy of solutions of (6) in the next few theorems.

Theorem 8. Let us assume that (uη ,εη
p ,Aη ,yη) is a solution of (6) for η > 0 and let us

assume that conditions (7) are satisfied. Then, there exists a constant C such that for all
η > 0 the inequality

E(uη ,εη ,εη
p ,A

η ,yη)(t)≤C for all 0≤ t ≤ T

is satisfied.

Proof. Let us calculate the derivative of E
Ė(uη ,εη ,εη

p ,A
η ,yη)(t)

=
∫

Ω
2μ(εη − εη

p )(ε̇
η − ε̇η

p )+λ tr[εη ] tr[ε̇η ]+2μc(skew(∇uη)−Aη)(skew(∇u̇η)− Ȧη)

+4lc∇axl(Aη) ·∇axl(Ȧη)+
γ
α

yη · ẏηdx

=
∫

Ω

(
2μ(εη − εη

p )+λ tr[εη ]I+2μc(skew(∇uη)−Aη)
) ·∇u̇ηdx

−
∫

Ω
4μc(axl(skew(∇uη)−Aη)) · axl(Ȧη)dx−

∫
Ω

4lcΔaxl(Aη) · axl(Ȧη)dx

−
∫

Ω
ε̇η

p ·T η
E dx+

∫
Ω

γ
α

yη · ẏηdx+4lc
∫

∂Ω
(∇axl(Aη) ·n) · axl(Ȧη)dS

= I1− I2− I3− I4 + I5 + I6,

where we have integrated by parts. By equation (6b) we know that

I1 =
∫

Ω
ση ·∇u̇ηdx =

∫
∂Ω

(ση ·n) · u̇ηdS−
∫

divση · u̇ηdx

(6a)
=
∫

∂Ω
(ση ·n) · u̇ηdS+

∫
Ω

f · u̇ηdx.

From (6c) we know that −I2− I3 = 0. Next, integrals −I4 + I5 ≤ 0 because (Fη ,gη) is
a monotone vector field. Finally, all these inequalities yield

Ė(uη ,εη ,εη
p ,A

η ,yη)(t)≤
∫

∂Ω
(ση ·n) · u̇ηdS

+4lc
∫

∂Ω
axl(Ȧη) · (∇axl(Aη) ·n)dS+

∫
Ω

f · u̇ηdx.

We integrate the above inequality over [0, t]

E(uη ,εη ,εη
p ,A

η ,yη)(t)

≤ E(uη ,εη ,εη
p ,A

η ,yη)(0)+
∫ t

0

∫
∂Ω

(ση ·n) · u̇ηdSdτ

+4lc
∫ t

0

∫
∂Ω

axl(Ȧη) · (∇axl(Aη) ·n)dSdτ +
∫ t

0

∫
Ω

f · u̇ηdxdτ

= E(0)+ J1 + J2 + J3. (17)
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By Theorem 2 we obtain

J1 ≤
∫ t

0
C(‖ση‖L2(Ω) +‖div(ση)‖L2(Ω))‖u̇d‖

H
1
2 (∂Ω)

dτ

≤
∫ t

0
C‖ f‖L2(Ω)‖u̇d‖

H
1
2 (∂Ω)

dτ +
∫ t

0
C
√
E(uη ,εη ,εη

p ,Aη ,yη)‖u̇d‖
H

1
2 (∂Ω)

dτ

≤C(t)+C
∫ t

0

√
Edτ ≤C(t)+

∫ t

0
Edτ, (18)

where in the last inequality we use the Young inequality. The function C(t) is positive and
independent of η .

Theorem 2 and equation (6c) give us

J2 ≤C4lc
∫ t

0
(‖∇axl(Aη)‖L2(Ω) +‖Δaxl(Aη)‖L2(Ω))‖Ȧd‖

H
1
2
dτ

=C
∫ t

0
(4lc‖∇axl(Aη)‖L2(Ω) +4‖μc axl(skew(∇uη)−Aη)‖L2(Ω))‖Ȧd‖

H
1
2
dτ

≤C
∫ t

0

√
E(uη ,εη ,εη

p ,Aη ,yη)‖Ȧd‖
H

1
2 (∂Ω)

dτ ≤C(t)+
∫ t

0
Edτ. (19)

Integrating partially by time and using Theorem 7 we obtain

J3 =
∫ t

0

∫
Ω

f · u̇η dxdτ =−
∫

Ω
f (0)uη(0)dx+

∫
Ω

f (t)uη(t)+
∫ t

0

∫
Ω

ḟ uη dxdτ

≤C(t)+
1
2
E(t)+

∫ t

0
E(t)dτ. (20)

Note that uη(0) and Aη(0) are solutions of system of equations (2) and do not depend on η .
Thus, C(t) in the last inequality and E(0) do not depend on η .

Putting inequalities (18), (19) and (20) into (17,) we obtain

E(t)≤ 1
2
E(t)+C

∫ t

0
Edτ +C(t).

This immediately gives

E(t)≤C(t)+C
∫ t

0
Edτ.

Finally, the Gronwall inequality completes the proof.

Directly from Theorem 8 we get that yη is bounded in L∞((0,T ),L2(Ω)). Addition-
ally, Theorem 7 yields that uη is bounded in L∞((0,T ),H1(Ω,R3)) and Aη is bounded in
L∞((0,T ),H1(Ω,so(3))). The tensor εη

p is bounded in L∞((0,T ),L2(Ω,Sym(3))) because
of the inequality

|εη
p |2 ≤ 2

(|εη |2 + |εη − εη
p |2
)≤CE(uη ,εη ,εη

p ,A
η ,yη).
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Thus, we can find the subsequence (still denoted by η) such that we have

uη ∗
⇀ u in L∞((0,T ),H1(Ω,R3)),

Aη ∗
⇀ A in L∞((0,T ),H1(Ω,so(3))),

εη
p
∗
⇀ εp in L∞((0,T ),L2(Ω,Sym(3))),

yη ∗
⇀ y in L∞((0,T ),L2(Ω)).

Hence, the limit functions satisfy

divσ =− f ,
σ = 2μ(ε− εp)+2μc(skew(∇u)−A)+λ tr[ε] · I,

−lcΔaxl(A) = μc axl(skew(∇u)−A),
u|∂Ω = ud, A|∂Ω = Ad.

In order to complete the proof of the existence of solution of system (1), we must show that
equation (1d) holds.

Theorem 9. Let us assume that

f ∈C2([0, T ], L2(Ω, R3)), ud ∈C3([0, T ], H
1
2 (Ω, R3)),

Ad ∈C3([0, T ], H
3
2 (Ω, R3)),

and that ε0
p ∈ L2(Ω,Sym(3)) and y0 ∈ L2(Ω) are such that

F
(
2μ(ε(0)− ε0

p),− γ
α y0) ∈ L2(Ω,Sym(3)),

g
(
2μ(ε(u(0))− ε0

p),− γ
α y0) ∈ L2(Ω).

(21)

Then there exists a constant C > 0 such that for all η > 0 the following inequality

E(u̇η , ε̇η , ε̇η
p , Ȧη , ẏη)(t)≤C for all 0≤ t ≤ T

is satisfied.

Proof. We denote uη(t + h), εη(t + h), εη
p (t + h), Aη(t + h), yη(t + h) by uη

h (t), εη
h (t),

εη
p,h(t), Aη

h (t), yη
h (t) respectively for a sufficiently small h > 0. We calculate the derivative

of the energy

Ė(uη
h −uη ,εη

h − εη ,εη
p,h− εη

p ,A
η
h −Aη ,yη

h − yη)(t)

=
∫

Ω
2μ(εη

h − εη − (εη
p,h− εη

p )) · (ε̇η
h − ε̇η − (ε̇η

p,h− ε̇η
p ))

+2μc(skew(∇uη
h −∇uη)− (Aη

h −Aη)) · (skew(∇u̇η
h −∇u̇η)− (Ȧη

h − Ȧη))

+4lc∇axl(Aη
h −Aη) ·∇axl(Ȧη

h − Ȧη)+
γ
α
(yη

h − yη) · (ẏη
h − ẏη)

+λ tr[εη
h − εη ] tr[ε̇η

h − ε̇η ]dx.
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We group terms

Ė(uη
h −uη ,εη

h − εη ,εη
p,h− εη

p ,A
η
h −Aη ,yη

h − yη)(t)

=
∫

Ω
(ση

h −ση) · (∇u̇η
h −∇u̇η)dx

−
∫

Ω
((T η

E,h−T η
E ) · (ε̇η

p,h− ε̇η
p )−

γ
α
(yη

h − yη)(ẏη
h − ẏη))dx

+
∫

Ω
4lc∇axl(Aη

h −Aη) ·∇axl(Ȧη
h − Ȧη)dx

−
∫

Ω
4μc axl(skew(∇uη

h −∇uη)− (Aη
h −Aη)) · axl(Ȧη

h − Ȧη)dx,

where ση
h (t) = ση(t +h) and T η

E,h = 2μ(εη
h − εη

p,h).

In the similar way as in the proof of Theorem 8 we obtain

Ė(uη
h −uη ,εη

h − εη ,εη
p,h− εη

p ,A
η
h −Aη ,yη

h − yη)(t)

≤
∫

Ω
( fh− f ) · (u̇η

h − u̇η)dx+
∫

∂Ω
((ση

h −ση) ·n) · (u̇d,h− u̇d)dS

+4lc
∫

∂Ω
((∇axl(Aη

h −Aη)) ·n) · axl(Ȧd,h− Ȧd)dS,

fh(t) = f (t + h), ud,h(t) = u(t + h) and Ad,h(t) = Ad(t + h). Integrating the above inequal-
ity over [0, t] we obtain

E(uη
h −uη ,εη

h − εη ,εη
p,h− εη

p ,A
η
h −Aη ,yη

h − yη)(t)

≤ E(0)+
∫ t

0

∫
Ω
( fh− f ) · (u̇η

h − u̇η)dxdτ +
∫ t

0

∫
∂Ω

((ση
h −ση) ·n) · (u̇d,h− u̇d)dSdτ

+
∫ t

0
4lc
∫

∂Ω
((∇axl(Aη

h −Aη)) ·n) · axl(Ȧd,h− Ȧd)dSdτ. (22)

The first integral on the right-hand side of the above inequality is calculated as follows∫ t

0

∫
Ω
( fh− f ) · (u̇η

h − u̇η)dxdτ

=
∫ t

0

∫
Ω
( fh− f ) · u̇η

h dxdτ−
∫ t

0

∫
Ω
( fh− f ) · u̇ηdxdτ

=
∫ t+h

h

∫
Ω
( f − f−h) · u̇ηdxdτ−

∫ t

0

∫
Ω
( fh− f ) · u̇ηdxdτ

=
∫ t

0

∫
Ω
(2 f − fh− f−h) · u̇ηdxdτ +

∫ t+h

t
( f − f−h) · u̇ηdxdτ

−
∫ h

0

∫
Ω
( f − f−h) · u̇ηdxdτ.

In the analogous way we proceed with the other integrals in inequality (22). Then, we divide
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both sides of the obtained inequality by h2 and pass to the limit as h→ 0+. Hence, we get

E(u̇η , ε̇η , ε̇η
p , Ȧ

η , ẏη)(t)≤ E(u̇η , ε̇η , ε̇η
p , Ȧ

η , ẏη)(0)+
∫ t

0

∫
Ω

f̈ · u̇ηdxdτ +
∫

Ω
ḟ · u̇ηdx

−
∫

Ω
ḟ (0) · u̇η(0)dx+

∫ t

0

∫
∂Ω

(ση ·n) · ...u ddS

+
∫

∂Ω
(ση ·n) · üddS−

∫
∂Ω

(ση(0) ·n) · üd(0)dS

+4lc
∫ t

0
(∇axl(Aη) ·n) · axl(

...
Ad)dSdτ

+4lc
∫

∂Ω
(∇axl(Aη) ·n) · axl(Äd)dS

−4lc
∫

∂Ω
(∇axl(Aη(0)) ·n) · axl(Äd(0))dS. (23)

The functions u̇η(0) and Ȧη(0) are the solution of the system

div σ̇η =− ḟ (0),

σ̇η = 2μ
(
ε(u̇η

0 )−Fη(2μ(ε(0)− ε0
p),− γ

α y0)
)

+2μc
(
skew(∇u̇η(0))− Ȧη(0)

)
+λ tr[ε(u̇η(0))]I,

−lcΔaxl
(
Ȧη(0)

)
= μc axl(skew(∇u̇η(0))− Ȧη(0)),

u̇η(0)|∂Ω = u̇d(0), Ȧη(0)|∂Ω = Ȧd(0).

The sequence ε̇η
p (0) = Fη(2μ(ε(0)− ε0

p),− γ
α y0) is bounded in L2(Ω,Sym(3)) and the se-

quence ẏη(0) = gη(2μ(ε(0)−ε0
p),− γ

α y0) is bounded in L2(Ω) because of assumptions (21)
and a property of the Yosida approximation. Therefore, the sequences u̇η(0) and Ȧη(0) are
bounded in their respective spaces and also ε̇η

p (0) and ẏη(0) are bounded. Thus, the sequence

E(u̇η , ε̇η , ε̇η
p , Ȧ

η , ẏη)(0)

is bounded independently of η .

We bound the terms on the right-hand side of inequality (23) in the analogous manner as
in the proof of Theorem 8. Hence, we arrive at the following inequality

E(u̇η , ε̇η , ε̇η
p , Ȧ

η , ẏη)(t)≤ 1
2
E(u̇η , ε̇η , ε̇η

p , Ȧ
η , ẏη)(t)

+
∫ t

0
E(u̇η , ε̇η , ε̇η

p , Ȧ
η , ẏη)(τ)dτ +C(t).

The proof is finished due to Gronwall’s inequality.

The sequences ε̇η
p = Fη(2μ(εη − εη

p ),− γ
α yη) and ẏη = gη(2μ(εη − εη

p ),− γ
α yη) are

bounded in the spaces L∞((0,T ),L2(Ω,Sym(3))) and L∞((0,T ),L(Ω)) respectively. Thus,
we have a subsequence such that a *-weak convergence

ε̇η
p = Fη(T η

E , − γ
α yη)

∗
⇀ ε̇p in L∞((0,T ),L2(Ω,Sym(3))),

ẏη = gη(T η
E ,− γ

α yη)
∗
⇀ ẏ in L∞((0, T ), L2(Ω))

(24)
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holds. In order to complete the proof, we must show that equalities ε̇p = F(TE , − γ
α y) and

ẏ = g(TE , − γ
α y) are satisfied. We need a stronger convergence here.

Theorem 10. Under the hypotheses of Theorem 9 the convergence

E(uη −uν ,εη − εν ,εη
p − εν

p ,A
η −Aν ,yη − yν)(t)→ 0 (25)

for ν ,η → 0+ holds uniformly on [0,T ].

Proof. Calculating the derivative of the energy from (25) we obtain

Ė(uν −uη ,εν − εη ,εν
p − εη

p ,A
ν −Aη ,yν − yη)(t)

=
∫

Ω
2μ(εν − εη − εν

p + εη
p ) · (ε̇ν − ε̇η − ε̇ν

p + ε̇η
p )+λ tr[εν − εη ] tr[ε̇ν − ε̇η ]

+2μc (skew(∇uν −∇uη)−Aν +Aη) · (skew(∇u̇ν −∇u̇η)− Ȧν + Ȧη)

+4lc(∇axlAν −∇axlAη) · (∇axl Ȧν −∇axl Ȧη)dx.

Because both approximation steps have the same boundary values we conclude

Ė(uν −uη , εν − εη , εν
p − εη

p , Aν −Aη , yν − yη)(t)

=
∫

Ω
−(T ν

E −T η
E ) · (ε̇ν

p − ε̇η
p )+

γ
α (y

ν − yη) · (ẏν − ẏη)dx.

Let (Jθ , jθ ) be the resolvent of (F,g) for θ > 0. Then, from the definition we have

θFθ + Jθ = I and θgθ + jθ = I.

The following equalites

Fθ (x) = F(Jθ (x), jθ (x)), gθ (x) = g(Jθ (x), jθ (x)) for all x ∈ Sym(3)×R

are also satisfied. Thus, thanks to (6d) we obtain∫
Ω
− (T ν

E −T η
E ) · (ε̇ν

p − ε̇η
p )+

γ
α (y

ν − yη) · (ẏν − ẏη)dx

=
∫

Ω
−((Jν(T ν

E ,− γ
α yν)− Jη(T η

E ,− γ
α yη)

)
·
(

F
(
Jν(T ν

E ,− γ
α yν), jν(T ν

E ,− γ
α yν)

)−F
(
Jη(T η

E ,− γ
α yη), jη(T η

E ,− γ
α yη)

))
dx

−
∫

Ω

(
( jν(T ν

E ,− γ
α yν)− jη(T η

E ,− γ
α yη)

)
·
(

g
(
Jν(T ν

E ,− γ
α yν), jν(T ν

E ,− γ
α yν)

)−g
(
Jη(T η

E ,− γ
α yη), jη(T η

E ,− γ
α yη)

))
dx

+
∫

Ω
−(νε̇ν

p −ηε̇η
p ) · (ε̇ν

p − ε̇η
p )− (ν ẏν −η ẏη) · (ẏν − ẏη)dx

≤
∫

Ω
(ν +η) · (ε̇η

p · ε̇η
p + ẏη · ẏν)dx≤

≤ (ν +η)(‖ε̇η
p ‖L2(Ω)‖ε̇ν

p‖L2(Ω) +‖ẏη‖L2(Ω)‖ẏν‖L2(Ω)).
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Norms on the right-hand side of the above inequality are bounded in virtue of Theorem 9.
Thus, we conclude

Ė(uν −uη , εν − εη , εν
p − εη

p , Aν −Aη , yν − yη)(t)≤C(ν +η).

We integrate this inequality by time and get E(t)≤C(T )(ν +η).

4.3. PROOF OF WELL-POSEDNESS

Finally, we prove the main theorem of the article.

Proof of Theorem 1. In virtue of Theorem 10 we obtain

T η
E → TE in L∞((0,T ),L2(Ω,Sym(3))),

yη → y in L∞((0,T ),L2(Ω)).
(26)

Because (Jη , jη) is a Lipschitz function with a constant 1, so we arrive at the following
inequality∣∣(Jη(T η

E ,− γ
α yη), jη(T η

E ,− γ
α yη)

)− (TE , − γ
α y)
∣∣

≤ ∣∣(Jη(T η
E ,− γ

α yη), jη(T η
E ,− γ

α yη)
)− (Jη(TE ,− γ

α y), jη(TE ,− γ
α y)
)∣∣

+
∣∣(Jη(TE ,− γ

α y), jη(TE ,− γ
α y)
)− (TE ,− γ

α y)
∣∣

≤ |(T η
E ,− γ

α yη)− (TE ,− γ
α y)|+ |(Jη(TE ,− γ

α
y), jη(TE ,− γ

α y))− (TE ,− γ
α y)|.

Thus, we conclude that(
Jη(T η

E ,− γ
α yη), jη(T η

E ,− γ
α yη)

)→ (TE , − γ
α y).

This and (24) and (26) yield that the equations

ε̇p = F(TE ,− γ
α y),

ẏ = g(TE ,− γ
α y)

are satisfied. Therefore, we have the existence of solutions of (1). We must still show their
uniqueness.

Let (u1,ε1
p,A

1,y1) and (u2,ε2
p,A

2,y2) be solutions of (1). We evaluate the energy on the
difference of these solutions

Ė(u1−u2,ε1− ε2,ε1
p− ε2

p,A
1−A2,y1− y2)(t)

=
∫

Ω
2μ(ε1− ε2− ε1

p + ε2
p) · (ε̇1− ε̇2− ε̇1

p + ε̇2
p)+λ tr[ε1− ε2] · tr[ε̇1− ε̇2]

+2μc(skew(∇(u1−u2))−A1 +A2) · (skew(∇(u̇1− u̇2))− Ȧ1 + Ȧ2)

+4lc∇(axl(A1−A2)) ·∇(axl(Ȧ1− Ȧ2))+ γ
α (y

1− y2) · (ẏ1− ẏ2)dx

=
∫

Ω
−(T 1

E −T 2
E ) · (ε̇1

p− ε̇2
p)+( γ

α y1− γ
α y2) · (ẏ1− ẏ2)dx
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The last integral in the above inequality is non positive because of monotinicity of (F,g).
Hence, we obtain

Ė(u1−u2,ε1− ε2,ε1
p− ε2

p,A
1−A2,y1− y2)(t)≤ 0.

Thus, E is non-increasing. Because E(0) = 0, we have E(t) = 0 for 0≤ t ≤ T . This finishes
the proof.
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Abstract: The article concerns compressed sensing methods in the quaternion algebra. We prove that
it is possible to uniquely reconstruct – by �1-norm minimization – a sparse quaternion signal from a lim-
ited number of its linear measurements, provided the quaternion measurement matrix satisfies the so-called
restricted isometry property with a sufficiently small constant. We provide error estimates for the recon-
struction of a non-sparse quaternion signal in the noisy and noiseless cases. We also prove that quaternion
Gaussian random matrices satisfy the restricted isometry property with overwhelming probability.
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1. INTRODUCTION

E. Candès et al. showed that – in the real or complex setting – if a measurement matrix sat-
isfies the so-called restricted isometry property (RIP) with a sufficiently small constant, then
every sparse signal can be uniquely reconstructed from a limited number of its linear mea-
surements as a solution of a convex program of �1-norm minimization (see e.g. [6, 7, 8, 13]
for more references). The sparsity of the signal is a natural assumption – most of the well
known signals have a sparse representation in the appropriate basis (e.g. the wavelet rep-
resentation of an image). Moreover, if the original signal was not sparse, the same mini-
mization procedure provides a good sparse approximation of the signal and the procedure is
stable in the sense that the error is bounded above by the �1-norm of the difference between
the original signal and its best sparse approximation.

For a certain time, the attention of the researchers in the theory of compressed sensing
had mostly been focused on the real and complex signals. Over the last decade, results of
numerical experiments have been published, suggesting that the compressed sensing meth-
ods can be successfully applied also in the quaternion algebra [2, 17, 20, 30]. However, until
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recently there were no theoretical results that could explain the success of these experiments.
The aim of our research is to develop theoretical background of the compressed sensing
theory in the quaternion algebra.

Our first step towards this goal is proving that one can uniquely reconstruct a sparse
quaternion signal – by �1-norm minimization – provided the real measurement matrix satis-
fies the RIP (for quaternion vectors) with a sufficiently small constant ([1, Corrolary 5.1]).
This result can be directly applied, since any real matrix satisfying the RIP for real vectors
satisfies the RIP for quaternion vectors with the same constant ([1, Lemma 3.2]). We also
want to point out a very interesting recent result by N. Gomes, S. Hartmann and U. Kähler
concerning the quaternion Fourier matrices arising in colour representation of images. They
showed that with high probability such matrices allow a sparse reconstruction by means of
the �1-norm minimization [15, Theorem 3.2]. Their proof, however, is straightforward and
does not use the notion of RIP.

The generalization of compressed sensing to the quaternion algebra would be significant
due to their wide applications. Apart from the classical applications (in quantum mechanics
and for the description of 3D solid body rotations), quaternions have also been used in 3D
and 4D signal processing [24], in particular to represent colour images (e.g. in the RGB or
CMYK models). Due to the extension of classical tools (like the Fourier transform [11])
to the quaternion algebra, it is possible to investigate colour images without the need of
treating each component separately [10, 11]. That is why quaternions have found numerous
applications in image filtering, image enhancement, pattern recognition, edge detection and
watermarking [12, 14, 19, 21, 23, 26, 29]. A dual-tree quaternion wavelet transform in a mul-
tiscale analysis of geometric image features has also been proposed [9]. For this purpose,
an alternative representation of quaternions is used – through its magnitude (norm) and three
phase angles: two of them encode phase shifts, while the third one contains image texture
information [4]. In view of numerous articles presenting results of numerical experiments of
quaternion signal processing and their possible applications, there is a natural need of further
thorough theoretical investigations in this field.

In the first part of this article, we extend the fundamental result of the compressed sensing
theory to the quaternion case. Namely, we show that if a quaternion measurement matrix
satisfies the RIP with a sufficiently small constant, then it is possible to reconstruct sparse
quaternion signals from a small number of their measurements via �1-norm minimization
(Corollary 6). We also estimate the error of reconstruction of a non-sparse signal from exact
and noisy data (Theorem 5). Note that these results not only generalize the previous ones
[1, Theorem 4.1, Corrolary 5.1], but also improve them by decreasing the error estimation’s
constants. This enhancement was possible due to the fact that algebraic properties of quater-
nion Hermitian matrices (Lemma 1) were used to derive characterization of the restricted
isometry constants (Lemma 3) analogous to the real and complex case. Consequently, one
can carefully follow the steps of the classical Candès’ proof [6] with caution to the non-
commutativity of quaternion multiplication.

Furthermore, it is known that real Gaussian and Bernoulli random matrices and partial
Discrete Fourier Transform matrices, to name just a few, satisfy the RIP (with overwhelming
probability) [13]. However, until recently there were no known examples of quaternion
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matrices satisfying this condition. It has been believed that quaternion Gaussian random
matrices satisfy RIP and, therefore, they have been widely used in numerical experiments
[2, 17, 30], but there was a lack of theoretical justification of this conviction. In the second
part of this article, we prove that this hypothesis is true, i.e. quaternion Gaussian random
matrices satisfy the RIP, and we provide estimates on matrix sizes that guarantee the RIP with
overwhelming probability (Theorem 11). The existence of quaternion matrices satisfying
the RIP, together with the main results of this article (Theorem 5, Corollary 6), constitute
the theoretical foundation of the classical compressed sensing methods in the quaternion
algebra already used in color image processing [2, 16, 20].

The article is organized as follows: in section 2 we recall basic notation and facts con-
cerning the quaternion algebra with particular emphasis on the properties of Hermitian form
and Hermitian matrices. The third section is devoted to the RIP and characterization of
the restricted isometry constants in terms of Hermitian matrix norm. In the fourth and fifth
sections, we present proofs of the fundamental results of the compressed sensing theory in
the quaternion case. The sixth section is dedicated to quaternion random variables and ma-
trices. We define the quaternion Gaussian random variable with mean zero and variance σ2,
denoted by X ∼NH

(
0,σ2), in particular we always assume independence of its components

– note that this aspect was not clear in [30]. We also provide distribution of the Rayleigh quo-
tient R for quaternion Gaussian random matrices and verify that it is sub-exponential with
appropriate parameters. In the seventh section, we prove the RIP for quaternion Gaussian
random matrices. Finally, in the eighth section we present results of numerical experiments
illustrating our results – we may see, in particular, that the rate of perfect reconstructions in
the quaternion case is higher than in the real case experiments with the same parameters. We
conclude with a short résumé of the obtained results and our further research perspectives.

2. ALGEBRA OF QUATERNIONS

Denote by H the algebra of quaternions

q = a+bi+ cj+dk, where a,b,c,d ∈ R,

endowed with the standard norm

|q|=√qq =
√

a2 +b2 + c2 +d2,

where q = a−bi− cj−dk is the conjugate of q. Recall that multiplication is associative but
in general not commutative in the quaternion algebra and is defined by the following rules

i2 = j2 = k2 = ijk =−1

and
ij =−ji = k, jk =−kj = i, ki =−ik = j.
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Multiplication is distributive over addition and has a neutral element 1 ∈ H hence, H forms
a ring which is usually called a noncommutative field. We also have

q ·w = w ·q for any q,w ∈H.

In what follows, we will interpret signals as vectors with quaternion coordinates, i.e.,
elements of Hn. Algebraically, Hn is a module over the ring H, usually called the quaternion
vector space (although it is not really a vector space since H is not a field). We will also
consider matrices with quaternion entries and with usual multiplication rules.

For any matrix Φ ∈ Hm×n with quaternion entries by Φ∗ we denote the adjoint matrix,
i.e., Φ∗ = ΦT , where T is the transpose. The same notation applies to quaternion vectors
x ∈Hn which can be interpreted as one-column matrices x ∈Hn×1. Obviously, (Φ∗)∗ = Φ.

A matrix Φ∈Hm×n defines an H-linear transformation Φ :Hn→Hm (in terms of the right
quaternion vector space, i.e., considering the right scalar multiplication) which behaves as
the standard matrix-vector multiplication:

Φ(x+y) = Φx+Φy and Φ(xq) = (Φx)q for any x,y ∈Hn, q ∈H.

We also have

(Φq)∗ = qΦ∗, (qΦ)∗ = Φ∗q, (Φx)∗ = x∗Φ∗, (ΦΨ)∗ = Ψ∗Φ∗

for all Φ ∈Hm×n, q ∈H, x ∈Hn, Ψ ∈Hn×p.

For any n ∈ N, we introduce the following Hermitian form 〈·, ·〉 : Hn×Hn → H with
quaternion values:

〈x,y〉= y∗x =
n

∑
i=1

yixi, where x = (x1, . . . ,xn)
T , y = (y1, . . . ,yn)

T ∈Hn

where T is the transpose. We also denote

‖x‖2 =
√
〈x,x〉=

√
n

∑
i=1
|xi|2 for any x = (x1, . . . ,xn)

T ∈Hn.

It is a straightforward calculation to verify that 〈·, ·〉 satisfies all properties of an inner
product, i.e., for all x,y,z ∈Hn and q ∈H:

• 〈x,y〉= 〈y,x〉;
• 〈xq,y〉= 〈x,y〉q;

• 〈x+y,z〉= 〈x,z〉+ 〈y,z〉;
• 〈x,x〉= ‖x‖2

2 ≥ 0 and ‖x‖2
2 = 0 ⇐⇒ x = 0.

Hence, ‖·‖2 satisfies the axioms of a norm in Hn.
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By carefully following the steps of the classical proof we also get the Cauchy-Schwarz
inequality (cf. [1, Lemma 2.2]):

|〈x,y〉| ≤ ‖x‖2 · ‖y‖2

for any x,y ∈Hn.

Notice that for Φ ∈ Hm×n, the matrix Φ∗ defines the adjoint H-linear transformation be-
cause

〈x,Φ∗y〉= (Φ∗y)∗ x = y∗Φx = 〈Φx,y〉 for x ∈Hn,y ∈Hm.

Recall that a linear transformation (matrix) Ψ ∈Hn×n is called Hermitian if Ψ∗ = Ψ. Obvi-
ously, Φ∗Φ is Hermitian for any Φ ∈Hm×n.

In the next section, we will use the following property of Hermitian matrices:

Lemma 1. Suppose Ψ ∈Hn×n is Hermitian. Then

‖Ψ‖2→2 = max
x∈Hn,‖x‖2=1

|〈Ψx,x〉|= max
x∈Hn\{0}

|〈Ψx,x〉|
‖x‖2

2

,

where ‖·‖2→2 is the standard operator norm in the right quaternion vector space Hn endowed
with the norm ‖·‖2, i.e.

‖Ψ‖2→2 = max
x∈Hn\{0}

‖Ψx‖2
‖x‖2

= max
x∈Hn,‖x‖2=1

‖Ψx‖2 .

Proof. Recall that a Hermitian matrix has real (right) eigenvalues [22]. Moreover, there
exists an orthonormal (in terms of the H-linear form 〈·, ·〉) basis of Hn consisting of eigen-
vectors xi corresponding to eigenvalues λi ∈ R, i = 1, . . . ,n (cf. [22, Theorem 5.3.6. (c)]),
i.e.,

Ψxi = xiλi and
〈
xi,x j

〉
= x∗jxi = δi, j for i, j = 1, . . . ,n.

Denote λmax = max
1≤i≤n

|λi|. We claim that ‖Ψ‖2→2 = λmax. Indeed, since the basis is orthonor-

mal, for any vector x =
n
∑

i=1
xiαi ∈Hn such that ‖x‖2

2 =
n
∑

i=1
|αi|2 = 1, we have

‖Ψx‖2
2 =

∥∥∥∥∥ n

∑
i=1

Ψxiαi

∥∥∥∥∥
2

2

=

∥∥∥∥∥ n

∑
i=1

xiλiαi

∥∥∥∥∥
2

2

=
n

∑
i=1
|λiαi|2 ≤ λmax

n

∑
i=1
|αi|2︸ ︷︷ ︸
=1

and for k such that |λk|= λmax,

‖Ψxk‖2 = ‖xkλk‖2 = λmax ‖xk‖2 = λmax.

On the other hand, since λi are real,

〈Ψx,x〉= x∗Ψx =

(
n

∑
i=1

xiαi

)∗( n

∑
j=1

Ψx jα j

)
=

(
n

∑
i=1

αix∗i

)(
n

∑
j=1

x jλ jα j

)
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=
n

∑
i=1

αiλiαi
λi∈R=

n

∑
i=1

λi |αi|2 .

Hence,

|〈Ψx,x〉| ≤ λmax

n

∑
i=1
|αi|2 = λmax

and – again – for the appropriate eigenvector the above quantities are equal. The result
follows.

In what follows, we will consider ‖·‖p norms for quaternion vectors x ∈ Hn defined in
the standard way:

‖x‖p =

(
n

∑
i=1
|xi|p

)1/p

, for p ∈ [1,∞)

and
‖x‖∞ = max

1≤i≤n
|xi| ,

where x = (x1, . . . ,xn)
T . We will also apply the usual notation for the cardinality of the sup-

port of x, i.e.

‖x‖0 = #supp(x), where supp(x) = {i ∈ {1, . . . ,n} : xi �= 0}.

3. RESTRICTED ISOMETRY PROPERTY

Recall that a vector x ∈Hn is called s-sparse if it has at most s nonzero coordinates, i.e.,

‖x‖0 ≤ s.

As we mentioned in the introduction, one of the conditions which guarantee exact recon-
struction of a sparse real signal from its few linear measurements is that the measurement
matrix satisfies the so-called restricted isometry property (RIP) with a sufficiently small con-
stant. The notion of restricted isometry constants was introduced by Candès and Tao in [8].
Here we generalize it to quaternion signals.

Definition 2. Let s ∈ N and Φ ∈ Hm×n. We say that Φ satisfies the s-restricted isometry
property (for quaternion vectors) with a constant δs ≥ 0 if

(1−δs)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1+δs)‖x‖2
2 (1)

for all s-sparse quaternion vectors x ∈Hn. The smallest number δs ≥ 0 with this property is
called the s-restricted isometry constant.

Note that we can define s-restricted isometry constants for any matrix Φ ∈Hm×n and any
s ∈ {1, . . . ,n}. It has been proved that if a real matrix Φ ∈ Rm×n satisfies the inequality (1)
for real s-sparse vectors x ∈ Rn, then it also satisfies it – with the same constant δs – for
s-sparse quaternion vectors x ∈Hn [1, Lemma 3.2].
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The following lemma extends an analogous result, known for real and complex matri-
ces [13], to the quaternion case. For every matrix Φ ∈ Hm×n and for every s-element set of
indices S⊂{1, . . . ,n}with #S = s by ΦS ∈Hm×s we denote the matrix consisting of columns
of Φ with indices in S.

Lemma 3. The s-restricted isometry constant of a matrix Φ ∈Hm×n equals

max
S⊂{1,...,n},#S≤s

‖Φ∗SΦS− Id‖2→2 .

Proof. We proceed as in [13, Chapter 6]. Fix any s ∈ {1, . . . ,n} and S ⊂ {1, . . . ,n} with
#S≤ s. Notice that the condition (1) is equivalent to∣∣∣‖ΦSx‖2

2−‖x‖2
2

∣∣∣≤ δs ‖x‖2
2 for all x ∈Hs,

where δs is the s-restricted isometry constant of Φ. The left hand side equals∣∣∣‖ΦSx‖2
2−‖x‖2

2

∣∣∣= |〈ΦSx,ΦSx〉−〈x,x〉|= |〈(Φ∗SΦS− Id)x,x〉|
and, by Lemma 1, since the matrix Φ∗SΦS− Id is Hermitian, we get

max
x∈Hs\{0}

|〈(Φ∗SΦS− Id)x,x〉|
‖x‖2

2

= ‖Φ∗SΦS− Id‖2→2 .

The next result is an important tool in the proof of Theorem 5. From Lemma 3 and
the Cauchy-Schwarz inequality we can obtain the same estimate as in the real and complex
cases (cf. [6, Lemma 2.1] and [13, Proposition 6.3]) for quaternion vectors.

Lemma 4. Let δs be the s-restricted isometry constant for a matrix Φ ∈ Hm×n for some
s ∈ {1, . . . ,n}. For any pair of x,y ∈Hn with disjoint supports and such that ‖x‖0 ≤ s1 and
‖y‖0 ≤ s2, where s1 + s2 ≤ n,

|〈Φx,Φy〉| ≤ δs1+s2 ‖x‖2 ‖y‖2 .

Proof. In this proof, we will use the following notation: for any x ∈Hn and a set of indices
S⊂ {1, . . . ,n} with #S = s, let x|S = (xi1 , . . . ,xis) for S = {i1, . . . , is}.

Take any vectors x,y ∈ Hn that satisfy the assumptions and denote
S = supp(x)∪ supp(y). Obviously, #S = s1 + s2. Since x and y have disjoint supports, they
are orthogonal, which means that

〈x,y〉= 〈x|S,y|S〉= 0.

Using the Cauchy-Schwarz inequality and Lemma 3, we get

|〈Φx,Φy〉|= ∣∣〈ΦSx|S,ΦSy|S
〉−〈x|S,y|S〉∣∣= ∣∣〈(Φ∗SΦS− Id)x|S,y|S

〉∣∣
≤ ∥∥(Φ∗SΦS− Id)x|S

∥∥
2

∥∥y|S
∥∥

2 ≤ ‖Φ∗SΦS− Id‖2→2

∥∥x|S
∥∥

2

∥∥y|S
∥∥

2

≤ δs1+s2

∥∥x|S
∥∥

2

∥∥y|S
∥∥

2 ,

which finishes the proof, since
∥∥x|S

∥∥
2 = ‖x‖2 and

∥∥y|S
∥∥

2 = ‖y‖2.
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4. STABLE RECONSTRUCTION FROM NOISY DATA

As we mentioned in the introduction, our aim is to reconstruct a quaternion signal from
a limited number of its linear measurements with quaternion coefficients. We will also as-
sume the presence of white noise with bounded �2 quaternion norm. The observables are,
therefore, given by

y = Φx+ e, where x ∈Hn, Φ ∈Hm×n, y ∈Hm and e ∈Hm with ‖e‖2 ≤ η

for some m≤ n and η ≥ 0.

We will use the following notation: for any h ∈ Hn and a set of indices T ⊂ {1, . . . ,n},
the vector hT ∈Hn is supported on T with the following entries

(hT )i =

{
hi if i ∈ T,
0 otherwise, where h = (h1, . . . ,hn)

T .

The complement of T ⊂ {1, . . . ,n} will be denoted by T c = {1, . . . ,n}\T and the symbol xs
will be used for the best s-sparse approximation of the vector x, i.e. an s-sparse vector whose
s entries coincide with the coordinates of x with the biggest norms and other equal zero [13].

The following result is a generalization of [6, Theorem 1.3] and [1, Theorem 4.1] to
the full quaternion case. It also improves the error estimate’s constants from [1, Theo-
rem 4.1].

Theorem 5. Let a quaternion matrix Φ ∈ Hm×n satisfy the 2s-restricted isometry property
with a constant δ2s <

√
2−1 and let η ≥ 0. Then, for any x∈Hn and e∈Hm with ‖e‖2 ≤ η ,

if y = Φx+ e, the solution x# of the problem

argmin
z∈Hn

‖z‖1 subject to ‖Φz−y‖2 ≤ η (2)

satisfies ∥∥x#−x
∥∥

2 ≤
C0√

s
‖x−xs‖1 +C1η (3)

with constants

C0 = 2 ·
1+

(√
2−1

)
δ2s

1−
(√

2+1
)

δ2s

, C1 =
4
√

1+δ2s

1−
(√

2+1
)

δ2s

,

where xs denotes the best s-sparse approximation of x.

Proof. Denote
h = x#−x

and decompose h into a sum of vectors hT0 ,hT1 ,hT2 . . . in the following way: let T0 be the set
of s indices of x coordinates with largest quaternion norms (hence xs = xT0); T1 be the set
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of indices of hT c
0

coordinates with largest norms, T2 be the set of s indices of h(T0∪T1)
c co-

ordinates with largest norms, etc. Then, obviously all hTj are s-sparse and have disjoint
supports.

To prove (3), one can use the obvious inequality

‖h‖2 ≤ ‖hT0∪T1‖2 +
∥∥∥h(T0∪T1)

c

∥∥∥
2

and show that the following two estimations hold∥∥∥h(T0∪T1)
c

∥∥∥
2
≤ ‖hT0‖2 +2e≤ ‖hT0∪T1‖2 +2e, (4)

‖hT0∪T1‖2 ≤
1

1−β
(α ·η +2β · e), (5)

where e = 1√
s ‖x−xs‖1 and

α =
2
√

1+δ2s

1−δ2s
, β =

√
2δ2s

1−δ2s
,

as long as β < 1, which is true for δ2s <
√

2−1. Taking C0 =
4β

1−β +2 and C1 =
2α

1−β , we get
the conclusion of the theorem.

We omit the proof of the estimate (4), since it is the same as its counterpart in the proof
of [1, Theorem 4.1]. The proof of the inequality (5) is again very similar to the analogous
part of the proof of [1, Theorem 4.1] – one should carefully follow its course using Lemma 4
from Section 3 instead of [1, Lemma 3.3], and thus obtaining∣∣〈ΦhTi ,ΦhTj

〉∣∣≤ δ2s · ‖hTi‖2 ·
∥∥hTj

∥∥
2 for i = 0,1 and j ≥ 2.

The remaining steps remain unchanged leading directly to (5), which concludes the proof.

5. STABLE RECONSTRUCTION FROM EXACT DATA

Let us now assume that our observables are exact, i.e.

y = Φx, where x ∈Hn, Φ ∈Hm×n, y ∈Hm.

The below-mentioned result is a natural corollary of Theorem 5 for η = 0.

Corollary 6. Let Φ ∈Hm×n satisfy the 2s-restricted isometry property with a constant δ2s <√
2−1. Then for any x ∈Hn and y = Φx ∈Hm, the solution x# of the problem

argmin
z∈Hn

‖z‖1 subject to Φz = y (6)
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satisfies ∥∥x#−x
∥∥

1 ≤C0 ‖x−xs‖1 (7)

and ∥∥x#−x
∥∥

2 ≤
C0√

s
‖x−xs‖1 (8)

with constant C0 as in the Theorem 5. In particular, if x is s-sparse and there is no noise,
then the reconstruction by �1-norm minimization is exact.

We skip the proof since it is identical to that of [1, Corollary 5.1]. We encourage the reader
to follow the reasoning presented therein.

We conjecture that the requirement δ2s <
√

2− 1 is not optimal – there are known re-
finements of this condition for real signals (see e.g. [13, Chapter 6] for references). On
the other hand, the authors of [5] constructed examples of s-sparse real signals which can
not be uniquely reconstructed via �1-norm minimization for δs >

1
3 . This gives an obvious

upper bound for δs also for the general quaternion case.

6. QUATERNION GAUSSIAN RANDOM MATRICES

For a real random variable X , we will denote its expectation (mean) by EX and its vari-
ance by VarX . For Gamma distribution Γ(α,β ) with shape parameter α > 0 and rate param-
eter β > 0, i.e., random variable X with the probability density function

γα,β (x) =
β α

Γ(α)
xα−1e−βx for x ∈ (0,+∞),

we have that
EX =

α
β

and VarX =
α
β 2 .

Recall that a sum of squares of k independent standard Gaussian random variables N (0,1)
has Chi-square distribution with k degrees of freedom and χ2(k) = Γ

( k
2 ,

1
2

)
.

Quaternion random variables have not been studied as thoroughly as their real or complex
counterparts so far. However, during the last two decades they attracted the attention of
researchers both in theoretical and applied sciences [3, 27]. Quaternion random variable X
is defined by four real random variables

X = X0 +X1i+X2j+X3k

and as such can be associated with the four-dimensional real random vector (X1,X2,X3,X4).
There are several definitions of a quaternion Gaussian random variable [27]. The most gen-
eral (so-called R-Gaussian) calls the quaternion variable X Gaussian if (X1,X2,X3,X4) is
a Gaussian random vector in R4.
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Here we only consider quaternion R-Gaussian random variables with independent com-
ponents. More precisely, we assume that

Xi ∼N
(

0,
σ2

4

)
, i = 1, . . . ,4, and Xi are independent.

Such quaternion variables X = X0 +X1i+X2j+X3k will be called Gaussian with mean zero
and variance σ2 and denoted by X ∼NH

(
0,σ2).

In what follows, we consider quaternion random matrices with independent entries sam-
pled from quaternion Gaussian distribution, which has been defined above. Let us emphasize
once again that we always assume independence of components of quaternion Gaussian ran-
dom variables.

Lemma 7. Let Φ =
(
φi j
)

be an m× n quaternion Gaussian random matrix whose entries
are independent random variables with the distribution NH

(
0, 1

m

)
and let 0 �= x ∈Hn. Then

the random variable

R=
‖Φx‖2

2

‖x‖2
2

has Gamma distribution Γ(2m,2m) and it does not depend on x. In particular, ER= 1 and
VarR= 1

2m.

Proof. Since Φx
‖x‖2

= Φ
(

x
‖x‖2

2

)
, without loss of generality we can assume that ‖x‖2 = 1 and

hence,R= ‖Φx‖2
2. Let us decompose the matrix Φ into its components:

Φ = Φr +Φii+Φjj+Φkk, where Φr,Φi,Φj,Φk are real Gaussian random matrices,

and analogously every matrix entry can be written as

φi j = φr,i j +φi,i ji+φj,i jj+φk,i jk with φe,i j ∼N
(

0,
1
m

)
for e ∈ {r, i, j,k}.

In the same way we denote components of the vector x = (x1, . . . ,xn)
T .

Let Φx = y = (y1, . . . ,ym)
T , then

yk =
n

∑
�=1

φk�x�

=
n

∑
�=1

(φr,k�+φi,k�i+φj,k�j+φk,k�k) · (xr,�+ xi,�i+ xj,�j+ xk,�k)

=
n

∑
�=1

(φr,k�xr,�−φi,k�xi,�−φj,k�xj,�−φk,k�xk,�)

+
n

∑
�=1

(φi,k�xr,�+φr,k�xi,�−φk,k�xj,�+φj,k�xk,�)i
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+
n

∑
�=1

(φj,k�xr,�+φk,k�xi,�+φr,k�xj,�−φi,k�xk,�)j

+
n

∑
�=1

(φk,k�xr,�−φj,k�xi,�+φi,k�xj,�+φr,k�xk,�)k

=: yr,k + yi,ki+ yj,kj+ yk,kk.

Recall that

φe,i j ∼N
(

0,
1

4m

)
for e ∈ {r, i, j,k}, i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}.

Hence, for each e∈{r, i, j,k} and every k∈{1, . . . ,m}, random variables ye,k are independent
Gaussian variables (as linear combinations of Gaussian random variables) with Eye,k = 0 and
Varye,k =

1
4m – since all φe,k� are independent and

Varyr,k =
n

∑
�=1

(x2
r,�Varφr,k�+ x2

i,�Varφi,k�+ x2
j,�Varφj,k�+ x2

k,�Varφk,k�)

=
1

4m

n

∑
�=1

(x2
r,�+ x2

i,�+ x2
j,�+ x2

k,�) =
‖x‖2

2
4m

=
1

4m
.

For the remaining components we proceed analogously.

Independence of the variables φe,k� implies also independence of ye,k and ye,� for every
fixed e ∈ {r, i, j,k} and for all pairs k, � ∈ {1, . . . ,m}, k �= �. In order to verify independence
of yr,k and yi,k, k ∈ {1, . . . ,m}, observe that

Cov(yr,k,yi,k) = E(yr,k · yi,k)−Eyr,k ·Eyi,k

= E

[(
n

∑
�=1

(φr,k�xr,�−φi,k�xi,�−φj,k�xj,�−φk,k�xk,�)

)

·
(

n

∑
p=1

(φi,kpxr,p +φr,kpxi,p−φk,kpxj,p +φj,kpxk,p)

)]

=
n

∑
�=1

E
(
(φr,k�xr,�−φi,k�xi,�−φj,k�xj,�−φk,k�xk,�)

· (φi,k�xr,�+φr,k�xi,�−φk,k�xj,�+φj,k�xk,�)
)

=
n

∑
�=1

(xr,�xi,�Eφ 2
r,k�− xi,�xr,�Eφ 2

i,k�− xj,�xk,�Eφ 2
j,k�+ xk,�xj,�Eφ 2

k,k�)

=
1

4m

n

∑
�=1

(xr,�xi,�− xi,�xr,�− xj,�xk,�+ xk,�xj,�) = 0,

since Eφ 2
e,k� = Varφe,k� =

1
4m . In the same way one argues that covariance of the remaining

pairs is also zero. Recall that real Gaussian random vectors have independent components if
and only if their covariance equals zero.
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Therefore, we get that all ye,k, e ∈ {r, i, j,k} and k ∈ {1, . . . ,m}, are independent (real)
random variables with distribution N (0, 1

4m

)
and, hence,

√
4mye,k ∼N (0,1). This implies

that

4mR=
m

∑
�=1

((√
4myr,�

)2
+
(√

4myi,�

)2
+
(√

4myj,�

)2
+
(√

4myk,�

)2
)

is a sum of 4m squares of independent standard Gaussian random variables and, conse-
quently, 4mR has Chi-square distribution χ2(4m) = Γ(2m, 1

2). We conclude that R has dis-
tribution Γ(2m,2m), independently of x. This random variable has mean 2m

2m = 1 and variance
2m

(2m)2 =
1

2m .

As we previously remarked, in the real caseR has distribution Γ
(m

2 ,
m
2

)
, that is with four

times bigger variance [18]. It explains the aforementioned better results of quaternion sparse
vectors reconstruction compared with the real case (see Fig. 1 and Fig. 2(a) in Section 8),
since a quaternion Gaussian random matrix statistically has smaller restricted isometry con-
stant than its real counterpart.

Let us now proceed with the tools needed for the proof of the main result of Section 7.
Recall that a real random variable X is called sub-exponential (locally sub-Gaussian) [28] if
there exist σ2 > 0 and δ > 0 such that

E
(
et(X−EX)

)≤ exp
(

σ2t2

2

)
for |t| ≤ δ .

We will denote it X ∼ SubExp(σ2,δ ). Equivalently, one may write that

M(t) = E
(
etX)≤ exp

(
tEX +

σ2t2

2

)
for |t| ≤ δ ,

where M(t) is the moment generating function.

It is known that a random variable with Gamma distribution is sub-exponential with any
σ2 > VarX for some δ > 0 [28]. Below, we recall a simple proof of this fact, with σ2 and δ
chosen for our purposes, in which we shall use the following form of the moment generating
function of the Gamma distribution Γ(α,β ):

M(t) =
1(

1− t
β

)α for t < β .

Lemma 8. Let X have distribution Γ(α,β ). Then X ∼ SubExp
(

5
2 VarX , β

5

)
.

Proof. Indeed, take |t| ≤ β
5 , which means that |t|β ≤ 1

5 . Then

E
(
et(X−α

β )
)
=

1(
1− t

β

)α · e−t α
β =

(
1+

t
β
+

( t
β )

2

1− t
β

)α

· e−t α
β
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1− t
β≥ 4

5

≤
(

1+
t
β
+

5
4

(
t
β

)2
)α

· e−t α
β

≤ exp

(
α ·
(

t
β
+

5
4

(
t
β

)2
))

· exp
(
−t

α
β

)
= exp

(
1
2
· 5

2
α
β 2 · t2

)
,

where we used well known estimate 1+x≤ ex for x∈R. Hence, X is indeed sub-exponential
SubExp(σ2,δ ) with parameters σ2 = 5

2
α
β 2 =

5
2 VarX and δ = β

5 .

We will use the following known fact [28]: if X ∼ SubExp(σ2,δ ), then

P(|X−EX | ≥ t)≤ 2exp
(
− t2

2σ2

)
for 0≤ t ≤ σ2δ .

Corollary 9. The random variable R ∼ Γ(2m,2m) from Lemma 7 is sub-exponential with
parameters σ2 = 5

2 · 1
2m = 5

4m and δ = 2m
5 . Hence,

P(|R−1| ≥ t)≤ 2exp
(
− t2

2σ2

)
for 0≤ t ≤ 1

2
,

and therefore

∀0�=x∈Hn ∀0≤t≤ 1
2

P
(∣∣∣‖Φx‖2

2−‖x‖2
2

∣∣∣≥ t ‖x‖2
2

)
≤ 2exp

(
− t2

2σ2

)
. (9)

7. QUATERNION GAUSSIAN MATRICES SATISFY THE RIP

As it was stated in Section 3, we say that a deterministic matrix Φ ∈ Hm×n satisfies
the s-restricted isometry property (for quaternion vectors) with a constant δs ≥ 0 if the in-
equalities (1) hold for all s-sparse vectors x ∈ Hn. The smallest number δs ≥ 0 with this
property is called the s-restricted isometry constant. Without loss of generality, one can only
consider quaternion s-sparse unit vectors, i.e. ‖x‖2 = 1. Moreover, in Lemma 3 we proved
that

δs = max
S⊂{1,...,n},#S≤s

‖Φ∗SΦS− Id‖2→2 , (10)

where δs is the s-restricted isometry constant of Φ ∈ Hm×n and ΦS is the submatrix of Φ
consisting of columns with indices from S⊂ {1, . . . ,n}.

In this chapter we consider random matrix Φ and s-restricted isometry constants of its
realizations. Since it does not lead to confusion, in what follows we will use the same
symbol δs for the random variable (defined on the same probability space as Φ) giving
the s-restricted isometry contstant of each realization of Φ.
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We begin with the following result in which we fix the support set.

Lemma 10. Let Φ ∈ Hm×n be an m× n quaternion Gaussian matrix whose entries φi j are
independent quaternion random variables with distribution NH(0, 1

m). Moreover, let the set

S⊂ {1, . . . ,n} be such that #S = s≤ n. For any δ ∈
(

0, 1√
3

)
and ε ∈ (0,1), if

m≥ 10
3

δ−2
(

14s+ ln
(

2
ε

))
,

then, with probability at least 1− ε ,

‖Φ∗SΦS− Id‖2→2 < δ .

Proof. Fix a set S⊂ {1, . . . ,n} with #S = s and denote

AS = {x ∈Hn : supp x⊂ S ∧ ‖x‖2 = 1} .
This set can be associated with the unit sphere S4s−1 in R4s.

Take a number 0 < γ < 1
2 (the exact value of γ will be specified later). By [13, Proposi-

tion C.3], there exists a γ-covering Aγ of AS such that

#Aγ ≤
(

1+
2
γ

)4s

.

For any 0≤ δ̃ ≤ 1
2 , using (9) from Corollary 9, we get

P
(
∃y∈Aγ

∣∣∣‖Φy‖2
2−‖y‖2

2

∣∣∣≥ δ̃ ‖y‖2
2

)
= P

⎛⎝ ⋃
y∈Aγ

{∣∣∣‖Φy‖2
2−‖y‖2

2

∣∣∣≥ δ̃ ‖y‖2
2

}⎞⎠
≤ ∑

y∈Aγ

P
(∣∣∣‖Φy‖2

2−‖y‖2
2

∣∣∣≥ δ̃ ‖y‖2
2

)
≤ #Aγ ·2exp

(
− δ̃ 2

2σ2

)

≤ 2
(

1+
2
γ

)4s

exp

(
− δ̃ 2

2σ2

)

with σ2 = 5
4m . This implies that

P
(
∀y∈Aγ

∣∣∣‖Φy‖2
2−‖y‖2

2

∣∣∣< δ̃ ‖y‖2
2

)
≥ 1−2

(
1+

2
γ

)4s

exp

(
− δ̃ 2

2σ2

)
.

Since Aγ ⊂AS, we obviously have

∀y∈Aγ

∣∣∣‖Φy‖2
2−‖y‖2

2

∣∣∣< δ̃ ‖y‖2
2 ⇔ ∀y∈Aγ

∣∣∣‖ΦSyS‖2
2−‖yS‖2

2

∣∣∣< δ̃ ‖yS‖2
2 (11)
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and ∣∣∣‖ΦSyS‖2
2−‖yS‖2

2

∣∣∣= |〈(Φ∗SΦS− Id)yS,yS〉| .
For a matrix Φ satisfying the left (or equivalently the right) side of (11), denote Ψ = Φ∗SΦS−
Id. Since all vectors in Aγ are unit vectors supported on S, we have

∀y∈Aγ |〈ΨyS,yS〉|< δ̃ ‖yS‖2
2 = δ̃ ‖y‖2

2 = δ̃ .

By the definition of a γ-covering, for every x ∈ AS there is some y ∈ Aγ such that
‖x−y‖2 ≤ γ < 1

2 . Since both x and y are unit vectors supported on S, using properties
of the Hermitian norm and quaternion Cauchy-Schwarz inequality we get

|〈ΨxS,xS〉|= |〈ΨyS,yS〉+ 〈ΨxS,xS−yS〉+ 〈Ψ(xS−yS),yS〉|
≤ |〈ΨyS,yS〉|+‖Ψ‖2→2 ‖x‖2 ‖x−y‖2 +‖Ψ‖2→2 ‖x−y‖2 ‖y‖2

< δ̃ +2γ ‖Ψ‖2→2 .

In view of Lemma 1, since Ψ is Hermitian, taking supremum over all x ∈ AS, we obtain

‖Ψ‖2→2 < δ̃ +2γ ‖Ψ‖2→2 ⇒ ‖Ψ‖2→2 <
δ̃

1−2γ
.

Denoting δ = δ̃
1−2γ ≤ 1

2 · 1
1−2γ , we get

P(‖Φ∗SΦS− Id‖2→2 < δ )≥ P
(
∀y∈Aγ

∣∣∣‖Φy‖2
2−‖y‖2

2

∣∣∣< δ̃ ‖y‖2
2

)
≥ 1−2

(
1+

2
γ

)4s

exp

(
− δ̃ 2

2σ2

)

= 1−2
(

1+
2
γ

)4s

exp
(
−2

5
δ 2(1−2γ)2 m

)
.

It implies that if

m≥ 5
2
· δ−2

(1−2γ)2

(
4s · ln

(
1+

2
γ

)
+ ln

(
2
ε

))
,

then
P(‖Φ∗SΦS− Id‖2→2 < δ )≥ 1− ε. (12)

Taking γ = 2
e7/2−1

≈ 6.23 ·10−2, for which 1
(1−2γ)2 ≤ 4

3 and ln
(

1+ 2
γ

)
= 7

2 , we finally obtain

that for any positive δ ≤ 1
2 · 2√

3
= 1√

3
, if

m≥ 10
3

δ−2
(

14s+ ln
(

2
ε

))
,

then (12) holds, which concludes the proof.
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We are ready to prove the main result of this section.

Theorem 11. Let Φ be an m× n quaternion Gaussian matrix whose entries φi j are inde-

pendent quaternion random variables with distribution NH(0, 1
m). For any δ ∈

(
0, 1√

3

)
and

ε ∈ (0,1), if

m≥ 10
3

δ−2
(

15s+ ln
(

2
ε

)
+ s ln

(n
s

))
,

then with probability at least 1−ε the s-restricted isometry constant δs of Φ satisfies δs < δ .

Proof. Using (10), the proof of Lemma 10 and well known estimates of the Newton’s symbol
we get

P(δs ≥ δ ) = P

(
max

S : #S=s
‖Φ∗SΦS− Id‖2→2 ≥ δ

)
= P(∃S : #S=s ‖Φ∗SΦS− Id‖2→2 ≥ δ )

= P

( ⋃
S : #S=s

{‖Φ∗SΦS− Id‖2→2 ≥ δ
})

≤ ∑
S : #S=s

P(‖Φ∗SΦS− Id‖2→2 ≥ δ )

≤
(

n
s

)
·2
(

1+
2
γ

)4s

exp
(
−2

5
δ 2(1−2γ)2 m

)
≤ 2

(en
s

)s
(

1+
2
γ

)4s

exp
(
−2

5
δ 2(1−2γ)2 m

)
.

Therefore, if

m≥ 5
2
· δ−2

(1−2γ)2

(
s ln
(en

s

)
+4s · ln

(
1+

2
γ

)
+ ln

(
2
ε

))
,

then P(δs < δ )≥ 1− ε . Taking again γ = 2
e7/2−1

, we get the result.

8. NUMERICAL EXPERIMENT

In [1], we presented the results of numerical experiments of sparse quaternion vector x
reconstruction from its linear measurements y = Φx in the case of real-valued measurement
matrix Φ. Those experiments were inspired by the articles [2, 17, 30] and involved ex-
pressing the quaternion �1-norm minimization problem in terms of the second-order cone
programming (SOCP).
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In view of the main results of this paper (Theorem 5, Corollary 6), and having in mind that
quaternion Gaussian random matrices satisfy (with overwhelming probability) the restricted
isometry property (Theorem 11), we performed similar experiments in the case of quaternion
matrix – as in [30]. As in Section 6, we consider an m×n quaternion Gaussian random matrix
Φ = (φi j) whose entries are independent random variables with the distribution NH

(
0, 1

m

)
.

In what follows, we consider only the case of noiseless measurements, i.e. we solve the
problem (6).

Recall, after [30], that problem (6) is equivalent to

argmin
t∈R+

t subject to y = Φz, ‖z‖1 ≤ t. (13)

We decompose vectors y ∈Hm and z ∈Hn into real vectors representing their real parts and
components of their imaginary parts

y = yr +yii+yjj+ykk, z = zr + zii+ zjj+ zkk,

where yr,yi,yj,yk ∈ Rm, zr,zi,zj,zk ∈ Rn. Denote

zr = (zr,1, . . . ,zr,n)
T , zi = (zi,1, . . . ,zi,n)

T , zj = (zj,1, . . . ,zj,n)
T , zk = (zk,1, . . . ,zk,n)

T ,

and let φk ∈ Hm, k ∈ {1, . . . ,n} be the k-th column of the matrix Φ. Again, decompose as
previously

φk = φr,k +φi,ki+φj,kj+φk,kk,

where φr,k,φi,k,φj,k,φk,k ∈ Rm. Note that the second constraint in (13) can be written in
the form ∥∥(zr,k,zi,k,zj,k,zk,k)

T∥∥
2 ≤ tk for k ∈ {1, . . . ,n},

where tk are positive real numbers such that
n
∑

k=1
tk = t. Now we can rewrite (13) in the real-

valued setup in the following way:

argmin
z̃∈Rn

cT z̃ subject to ỹ = Φ̃z̃

and
∥∥(zr,k,zi,k,zj,k,zk,k)

T∥∥
2 ≤ tk for k ∈ {1, . . . ,n}, (14)

where

z̃ = (t1,zr,1,zi,1,zj,1,zk,1, . . . , tn,zr,n,zi,n,zj,n,zk,n)
T ∈ R5n, (15)

c = (1,0,0,0,0, . . . ,1,0,0,0,0)T ∈ R5n, (16)

ỹ = (yT
r ,y

T
i ,y

T
j ,y

T
k )

T ∈ R4m, (17)

Φ̃ =

⎛⎜⎜⎝
0 φr,1 −φi,1 −φj,1 −φk,1 . . . 0 φr,n −φi,n −φj,n −φk,n
0 φi,1 φr,1 −φk,1 φj,1 . . . 0 φi,n φr,n −φk,n φj,n
0 φj,1 φk,1 φr,1 −φi,1 . . . 0 φj,n φk,n φr,n −φi,n
0 φk,1 −φj,1 φi,1 φr,1 . . . 0 φk,n −φj,n φi,n φr,n

⎞⎟⎟⎠ (18)

and Φ̃ ∈ R4m×5n.
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This is a standard form of the SOCP, which can be solved using the SeDuMi toolbox for
MATLAB [25]. The solution

x̃# =
(

t1,x#
r,1,x

#
i,1,x

#
j,1,x

#
k,1, . . . , tn,x

#
r,n,x

#
i,n,x

#
j,n,x

#
k,n

)T ∈ R5n (19)

to the problem (14) can easily be expressed as

x# =
(

x#
r,1 + x#

i,1i+ x#
j,1j+ x#

k,1k, . . . , x#
r,n + x#

i,ni+ x#
j,nj+ x#

k,nk
)
∈Hn, (20)

which is the solution of our original problem (6).

The experiments were carried out in MATLAB R2016a on a standard PC machine, with
Intel(R) Core(TM) i7-4790 CPU (3.60GHz), 16GB RAM and with Microsoft Windows
10 Pro. The algorithm consisted of the following steps:

1. Fix constants n = 256 (length of x) and m (number of measurements, i.e. length of y)
and generate the measurement matrix Φ ∈ Hm×n with Gaussian entries sampled from
i.i.d. quaternion normal distribution NH

(
0, 1

m

)
;

2. Choose the sparsity s ≤ m
2 and draw the support set S ⊆ {1, . . . ,n} with #S = s, uni-

formly at random. Generate a vector x ∈Hn such that suppx = S with i.i.d. quaternion
normal distribution NH(0,1);

3. Compute y = Φx ∈Hm;

4. Construct vectors ỹ,c and matrix Φ̃ as in (15)–(18);

5. Call the SeDuMi toolbox to solve the problem (14) and calculate the solution x̃#;

6. Compute the solution x# using (20) and the errors of reconstruction (in the �1- and
�2-norm sense), i.e.

∥∥x#−x
∥∥

1 and
∥∥x#−x

∥∥
2.

The experiment was carried out for m = 2, . . . ,64 and s = 1, . . . , m
2 . The range of s is not

accidental – it is known that, in general, the minimal number m of measurements needed for
the reconstruction of an s-sparse vector is 2s [13, Theorem 2.13]. For each pair of (m,s),
we performed 1000 experiments, saving the errors of each reconstruction and the number
of perfect reconstructions (the reconstruction is said to be perfect if

∥∥x#−x
∥∥

2 ≤ 10−7).
For comparison, we also repeated this experiment for the case of Φ ∈ Rm×n and x ∈ Rn.
The percentage of perfect reconstructions in each case is presented in Fig. 1 and Fig. 2 (a).

Fig. 1 (a) presents the dependence of the perfect recovery percentage on the number of
measurements m and sparsity s in the quaternion case. We see that simulations confirm our
theoretical considerations. Fig. 1 (b) shows the same results for the real case, i.e. Φ ∈ Rm×n

and x∈Rn. Note that in the first experiment for m = 32 and s≤ 9 the recovery rate is greater
than 95%, the same holds for m = 64 and s ≤ 20. It is also worth noticing that the results
for corresponding pairs (m,s) are much better in the quaternion setup than in the real-valued
case (see Fig. 2(a)). We explain this phenomenon in Lemma 7, namely, we show that for
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Fig. 1. Results of the recovery experiment for n = 256 and different m and s. Image intensity stands
for the percentage of perfect reconstructions
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Fig. 2. (a) Comparison of the recovery experiment results for n = 256, m = 32 and different values
of s. (b) Lower estimate of the constant C0 in Corollary 6 obtained from the inequality (7) for n = 256
and m = 32

a fixed vector x ∈Hm and the ensemble of quaternion Gaussian random matrices Φ ∈Hm×n,

the ratio random variable ‖Φx‖2
2

‖x‖2
2

has distribution Γ(2m,2m), i.e., its variance equals 1
2m , which

is four times smaller than in the case of a real vector and real Gaussian matrices of the same
size. In other words, a quaternion Gaussian random matrix statistically has smaller restricted
isometry constant than its real counterpart.

We also performed another experiment illustrating the approximated reconstruction of
non-sparse quaternion vectors from the exact data – as stated in Corollary 6. We fixed con-
stants n = 256 and m = 32 and generated the measurement matrix Φ ∈ Hm×n with random
entries sampled from i.i.d. quaternion normal distribution and 1000 arbitrary vectors x ∈Hn

with standard Gaussian random quaternion entries (σ2 = 1), without assuming their spar-
sity. The above-described algorithm (steps 3.–6.) was applied to approximately reconstruct
the vectors. We used the reconstruction errors

∥∥x#−x
∥∥

1 to obtain a lower bound on the con-

58



Quaternionic compressed sensing

stant C0 as a function of s, for s = 1, . . . ,64, using inequality (7), i.e.,

C0 ≥
∥∥x#−x

∥∥
1

‖x−xs‖1
,

where xs denotes the best s-sparse approximation of x. Results of this experiment are shown
in Fig. 2 (b) in the form of a scatter plot – each point represents a lower estimate of C0 for
one vector x and sparsity s. We see that the dependence on s is monotone, as expected.

9. CONCLUSIONS

The results of this article form a theoretical background of the classical compressed sens-
ing methods in the quaternion algebra. We extended the fundamental result of this theory to
the full quaternion case, namely we proved that if a quaternion measurement matrix satisfies
the RIP with a sufficiently small constant, then it is possible to reconstruct sparse quater-
nion signals from a small number of their measurements via �1-norm minimization. We also
estimated the error of the approximated reconstruction of a non-sparse quaternion signal
from exact and noisy data. This improves our previous result for real measurement matrices
and sparse quaternion vectors [1] and explains success of various numerical experiments in
the quaternion setup [2, 17, 30].

The article also answers in affirmative the question about the existence of quaternion ma-
trices satisfying the RIP. We confirm that restricted isometry constants of Gaussian quater-
nion matrices are small with big probability (and typically smaller than their real coun-
terparts). Together with the aforementioned result (quaternion measurement matrices with
small RIP constants allow the exact reconstruction of sparse quaternion vectors), it explains
why compressed sensing based experiments in the quaternion algebra work, and brings hope
for their wider applications. However, this result in the current form is not sharp. One of
the reasons for that is the fact that we used techniques previously applied to the case of real
subgaussian random matrices.

There are several possibilities of further research in this field – both in theoretical and
applied directions. Among others:

– further refinements of the main results in the quaternion algebra or their extensions to
different algebraic structures,

– search for quaternion matrices satisfying the RIP other than Gaussian,

– adjusting reconstruction algorithms to quaternions,

– applications of the theory in practice.

Judging by the number of articles concerning quaternion signal processing published in
the last decade we expect that this new branch of compressed sensing will attract attention
of even more researchers and will develop considerably.
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Abstract: In order to introduce a method of estimating the number of limit cycles in Liénard’s systems
we analyse an interesting example of a family of Liénard’s equations. One can numerically observe an
infinite series of saddle-node bifurcations for this family which creates arbitrarily many limit cycles. We
study these equations analytically. In order to investigate the existence of periodic solutions we consider the
family of linearized equations. One can find the explicit form of the Poincaré map for every equation of this
linearized family. We show that for sufficiently small values of parameters there is a similarity between the
Poincaré maps for linearized and non-linearized families. It leads us to the conclusion that for any natural
number n there exists an equation from the non-linearized family with at least n periodic solutions.
Keywords: Liénard equation, limit cycles, perturbation
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1. INTRODUCTION

One of the most difficult problems concerning Liénard’s equations (for definition see
section 2) is to determine the number of limit cycles. Earlier studies were mostly focused
on estimating the number and the location of limit cycles for polynomial Liénard’s systems
only (see [1, 2, 3, 5]). In this paper we study the number of limit cycles for a subclass of
Liénard equations given by

ẍ+ k f ′(x)ẋ+ cx = 0, (1)

where k ∈R, c > 0 and the function f ∈C2 (R) is odd (we do not assume that f is a polyno-
mial). Our approach to the analysis of (1) is to study its linear approximation which is much
easier to understand. Obviously, this approach raises the following question: how similar are
the solutions of this linear approximation to the solutions of equation (1)? In this paper we
are trying to answer this question. Our main result is the following theorem:
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Theorem 1 (Main Theorem). Let us consider a differential equation of the form

ẍ+ k f ′(x)ẋ+ x = 0, (2)

where f ∈ C2 (R) is odd and k > 0. We denote the Poincaré map of linear approximation
of (2) by ξ . When we take any compact set A ⊂ R such that there is at most finitely many
zeros of ξ in A and

∀y ∈ A ξ (y) = 0 =⇒ (
y ∈ int(A) ∧ ξ ′ (y) �= 0

)
,

then, on the set A, for sufficiently small values of k, the function ξ is similar (in the sense of
definition 10) to the Poincaré map of (2) (we denote it by pk).

A Strict formulation of this theorem along with a proof and the definition of "similarity"
can be found in section 4. As an example, in the last section of the paper we consider
a specific family of equations given by:

ẍ+ k(a− cos(x))ẋ+ x = 0, a ∈ R, k > 0. (3)

It occurs that for the family (3) one can (numerically) observe a series of bifurcations which
create any number of limit cycles. By ζ let us denote the derivative of the solution of (3)
with respect to the parameter k. The equation describing ζ is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ζ̇ =

[
0 1
−1 0

]
ζ +

[
−ay0 sin(t)+ siny0 sin(t)

0

]
,

ζ (0) =

[
0
0

]
,

(4)

where (0,y0) is the starting point of the trajectory. After some computation one can obtain an
analytical form of the Poincaré map for equation (4), which can be expressed in an elegant
form by the Bessel function

ξ (y0) =
(ay0

2
− J1(y0)

)
π.

The main result allows us to claim that there exist parameters a, k for which equation (3)
has arbitrarily many limit cycles. Anyway, since this result holds only for small values of
k > 0, it is natural to compare it with a numerical one for some realistic values of k. This
comparison is also shown in the last section (see figure 2 and 3).

We believe that Theorem 1 is quite an interesting result which shows an interesting con-
nection between the number of limit cycles of Liénard’s equation (not necessarily polyno-
mial) and the number of roots of the Poincaré map. Moreover, in the case of problem (3) it
presents the elegant connection between the Bessel function and the number of existing limit
cycles.
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Structure of the article:

Our main goal is to find periodic trajectories (if they exist) of equation (1) for arbitrary
odd function f ∈ C2 (R). We will attempt that by studying two different testing functions
pk and ξ . The function pk is created by considering the Poincaré map for equation (1), ξ is
based on the linear approximation of (1). Both of them represent the behaviour of trajectories
which circle the origin.

In section 2 we start our considerations by discussing Liénard’s equation and its proper-
ties. Section 3 is concentrated on presenting proper testing functions pk and ξ . The main
"similarity" result is presented in section 4 along with a proof which is divided into few
lemmas. In the last section we use Theorem 12 to analyse family of equations (3).

2. LIÉNARD EQUATION

Definition 2 (Liénard equation). A differential equation given by:

ẍ+ f ′(x)ẋ+g(x) = 0, (5)

where f ,g ∈C1(R) are odd is called a Liénard’s equation.

Remark 3. The differential equation (5) is equivalent to the system of differential equations
given by: {

ẋ =− f (x)+ y,
ẏ =−g(x).

Example 4. The basic example of a Liénard’s equation is the well-known Van der Pol equa-
tion:

ẍ+μ(x2−1)ẋ+ x = 0.

Due to Remark 3 Van der Pol equation can be rewritten as:{
ẋ =−μ

(
x3

3 − x
)
+ y,

ẏ =−x.
(6)

One can prove that for μ > 0 system (6) has only one periodic solution which is stable (see
for example [4]).

Remark 5. The behaviour of the solutions of (5) is similar (by reversing time) to the be-
haviour of the solutions to

ẍ− f ′(x)ẋ+g(x) = 0.
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From now on we only consider the sub-class of Liénard equations in the form

ẍ+ k f ′(x)ẋ+ cx = 0, (7)

where the function f ∈C2(R) is odd, c > 0 and k ∈ R.

Remark 6. If k �= 0 then the behaviour of solutions to (7) is similar (by scaling time) to the
behaviour of solutions to

ẍ+
k√
c

f ′(x)ẋ+ x = 0.

Since we are only interested in the behaviour of solutions to (7), we can use remarks 3, 5
and 6 to reformulate the problem and consider the following class of differential equations:{

ẋ =−k f (x)+ y,
ẏ =−x,

(8)

where k > 0 and f ∈C2 (R) is odd. In this formulation we omit the case k = 0 in (7); however,
in this situation the problem becomes trivial and uninteresting.

Properties of the ordinary differential equations system (8):

i. The system has only one stationary point (0,0).

ii. (8) is symmetric with respect to the origin. This property allows us to consider a be-
haviour of trajectories only in the I and IV quadrants.

3. TESTING FUNCTIONS FOR SOLUTIONS

We consider system (8) with an arbitrary odd function f ∈C2 (R). Let us denote the solu-
tion of system (8) for arbitrary given parameter k = k0 and initial condition z(0,x0,y0,k0) =
(x0,y0) by z(t,x0,y0,k0). The function z can be expressed as follows

z(t,x0,y0,k0) =: (z1(t,x0,y0,k0),z2(t,x0,y0,k0)) .

Definition 7 (Function pk). For the system (8) with an arbitrary value of k let us define the
function

pk : R+∪{0}→ R∪{∞} such that pk(y) = y+ ỹ,

where ỹ := z2(tb(y),0,y,k) and tb(y) > 0 is the first positive time when the trajectory
z(t,0,y,k) of the system (8) intersects the y-axis. If such time does not exist then we take
pk(y) = ∞.
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Interpretation of the values of pk (·):

• pk(y)< 0 means that the trajectory starting from the point (0,y) is circling away from
the origin.

• pk(y)> 0 means that the trajectory starting from the point (0,y) is circling towards the
origin.

• pk(y) = 0 means that the trajectory starting from the point (0,y) is periodic.

Properties of the function pk:

i. If f ∈C1(R) then, because of non-intersection of trajectories, we obtain the following:

∃y0 > 0, pk (y0) = ∞ =⇒ ∀y > y0, pk (y) = ∞.

ii. For one ”circulation” of the trajectory starting from the point (0,y) (for y � 0) the
point ỹ is the minimum of the coordinate y on that piece of trajectory.

iii. By applying The Implicit Function Theorem one can easily show that pk is the same
class Ck as the function f (on the set where pk is finite). In our case we have pk ∈C2.

iv. It can be shown that:

(a) There exists M > 0 such that the following implication holds:

∀x � 0, f (x)>−M =⇒ ∀y � 0, k � 0 pk(y)�−2Mk.

(b) There exists M > 0 such that the following implication holds:

∀x � 0, f (x)< M =⇒ ∀y � 0, k � 0 pk(y)� 2Mk.

Therefore, if f is bounded then pk is also bounded.

Proof. We present the proof of (a). The analysis of (b) is similar.

Let us consider the testing function given by:

λ (x,y) =
1
2
(y+ kM)2 +

x2

2
.

We are only interested in the part of the trajectories which are in the I and IV quadrants.
Hence

dλ
dt

(x(t),y(t)) = (y+ kM)ẏ+ xẋ

=−x(y+ kM)+ x(−k f (x)+ y)
=−kx(M+ f (x))� 0.
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Therefore, λ is non-increasing along that part of the trajectories.

Now let us take y > 0, the trajectory starting from the point (0,y) and the first pos-
itive time t when this trajectory intersect the y-axis. We know that λ (x(0),y(0)) �
λ (x(t),y(t)). This implies

(y+ kM)2 � (ỹ+ kM)2. (9)

From inequality (9) we obtain: y � ỹ �−y−2kM.
Finally, we get pk(y) = y+ ỹ � y− y−2kM =−2kM, as required.

It should be emphasized that the problem of finding the function pk is at least as difficult as
solving the system (8). Because of that pk cannot be used directly to analyse solutions of our
equation and we have to omit the problem somehow.

Let us denote:

ζ (t,x0,y0) :=
∂ z(t,x0,y0,k)

∂k |k=0
. (10)

Observe that ζ is a vector valued function. Therefore, we can expressed it as follows:

(ζ1 (t,x0,y0) ,ζ2 (t,x0,y0)) :=ζ (t,x0,y0)

=

(
∂ z1(t,x0,y0,k)

∂k |k=0
,
∂ z2(t,x0,y0,k)

∂k |k=0

)
.

Definition 8 (Function ξ (y)). In respect to earlier denotations let us define ξ :R+∪{0}→R

by ξ (y) := ζ2(π,0,y).

Due to the property i of system (8) we have that ξ (0) = 0.

Lemma 9. ζ1(π,0,y)≡ 0 and ξ (y) = ζ2(π,0,y) =
∫ π

0 sin(τ) f (ysin(τ))dτ .

Proof. By applying Smoothness of Flows Theorem to the system (8) we obtain that z ∈C2 in
respect to all variables. Moreover, the following variational equation is satisfied:

d
dt

∂ z
∂k |k=k0

(t,x0,y0,k) = Dz f̃ (z(t,x0,y0,k0),k0)
∂ z
∂k |k=k0

(t,x0,y0,k)+
∂ f̃
∂k

(z(t,x0,y0,k0),k0),

∂ z
∂k |k=k0

(0,x0,y0,k) = 0,

where we denote f̃ (x,y,k) :=
[ −k f (x)+ y

−x

]
– the right-hand side of the system (8).

Let us take k0 = 0, x0 = 0, y0 = y > 0 and use the notation (10). Hence we obtain the
following differential equation:⎧⎪⎨⎪⎩

dζ
dt

(t,0,y) =

[
0 1
−1 0

]
ζ (t,0,y)+

[
− f (ysin(t))

0

]
,

ζ (0,0,y) = 0.

(11)
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To solve (11) one can use the standard variation of parameters method and obtain

ζ (t,0,y) =
[

F1(t)cos(t)+F2(t)sin(t)
−F1(t)sin(t)+F2(t)cos(t)

]
,

where: F1(t) :=
∫ t

0−cos(τ) f (ysin(τ))dτ , F2(t) :=
∫ t

0−sin(τ) f (ysin(τ))dτ .
Now, we take t = π , which leads to

ζ (π,0,y) =
[ −F1(π)
−F2(π)

]
=

⎡⎣ 0
π∫
0

sin(τ) f (ysin(τ))dτ

⎤⎦ ,
as required.

Lemma 9 implies that if we consider an infinitesimal value of k then, after time t = π , the
trajectory of system (8) starting from positive part of y-axis will not be perturbed in direction
x. One can think of ξ as the Poincaré map for the linearized system (8).

Interpretation of the values of function ξ (·):

• ξ (y) < 0 implies that the function z2(π,0,y, ·) is decreasing on a sufficiently small
interval, which contains k = 0 (linearized system). We also know that z2(π,0,y,0) =
−y and as a consequence z2(π,0,y,k)<−y for sufficiently small positive values of k.
In other words, for such values of k, the trajectory starting from the point (0,y) should
circle away from the origin.

• ξ (y) > 0 implies that z2(π,0,y, ·) is increasing on a sufficiently small interval, which
contains k = 0. As a consequence we have that z2(π,0,y,k)>−y for sufficiently small
positive values of k. In other words, for such values of k, the trajectory starting from
the point (0,y) should circle towards the origin.

• ξ (y) = 0 means, that if the parameter k is infinitesimally small, then after the time
t = π , there should be no disturbance of trajectory of (8) in any direction in relation to
the linearized system (k = 0), where all trajectories are periodic.

We can observe that in the case of infinitesimally small values of k the interpretation of
the values of the function ξ is much the same as for the function pk. What is more, in order
to find the explicit expression of ξ we only need to know the form of the function f . Our
main goal is to show that, indeed there exists a positive value k such that both functions pk
and ξ give us the same behaviour of the trajectories.
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4. SIMILARITY OF FUNCTIONS PK AND ξ

Next step is to check if functions pk and ξ are similar in some way. First of all, we have
to define how we understand this similarity.

Definition 10 (Similar functions). Suppose that f1, f2 ∈ C ([a,b]) and [a,b] ⊂ R is a set
where both functions f1 and f2 have exactly n ∈ N∪{0} zeros. Denote zeros of function
f1 by y1, . . . ,yn. We say that f1 is similar to f2 on the compact set [a,b] if there exists
a homeomorphism h : [a,b]→ [a,b] such that:

1. h(a) = a, h(b) = b.

2. f1(y) · ( f2 ◦h)(y)� 0 in [a,b] and the equality holds only for y = yi (for i = 1, . . . ,n).

We denote this similarity by f1 ≈
[a,b]

f2.

Remark 11. Relation f1 ≈
[a,b]

f2 is an equivalence relation.

Theorem 12. Suppose that f ∈C2(R) is odd and let us consider{
ẋ =−k f (x)+ y,
ẏ =−x.

(12)

Suppose that for some closed set [a,b] ⊂ R+ the function ξ has only finitely many zeros
y1, . . . ,yn in that set. What is more, yi ∈ (a,b) and ξ ′(yi) �= 0 for i = 1, . . . ,n. Then, for
a sufficiently small positive values of k, we have ξ ≈

[a,b]
pk.

Proof of Theorem 12 is a consequence of the following lemmas:

Lemma 13. Assume that for some compact set [a,b] ⊂ R+ (it can be degenerated) there
exists a positive value k0 such that one of the following holds:

1. For every k ∈ [−k0,k0] and every y ∈ [a,b] the value of ∂ z2
∂k (π,0,y,k) is negative.

2. For every k ∈ [−k0,k0] and every y ∈ [a,b] the 1value of ∂ z2
∂k (π,0,y,k) is positive.

Then:

pk(y) · ∂ z2

∂k
(π,0,y,k)> 0, ∀k ∈ (0,k0] , ∀y ∈ [a,b] .
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Proof. We consider two different cases.

1. ∀y ∈ [a,b] , ∀k ∈ [−k0,k0] ,
∂ z2
∂k (π,0,y,k)< 0.

Let us take y0 ∈ [a,b]. Due to our assumption z2(π,0,y0,k) is decreasing for k ∈ [−k0,k0].
In particular, for a fixed k ∈ (0,k0]

−y0 = z2(π,0,y0,0)> z2(π,0,y0,k)� ỹ0,

where the last inequality holds by property ii of the function pk. Hence

pk(y0) = y0 + ỹ0 < y0 +(−y0) = 0.

Because we have chosen arbitrary k, it leads us to the conclusion that pk(y0) < 0 for every
k ∈ (0,k0]. Since y0 was chosen arbitrarily this ends the proof of case 1.

2. ∀y ∈ [a,b] , ∀k ∈ [−k0,k0] ,
∂ z2
∂k (π,0,y,k)> 0.

Again, we take any y0 ∈ [a,b]. By the assumption we obtain that z2(π,0,y0,k) is increasing
for k ∈ [−k0,k0]. Let us take any k ∈ (0,k0]. The argument from case 1 cannot be used di-
rectly here because the trajectory does not have to intersect y-axis in the time t = π . It means
that the inequality z2(π,0,y0,k)� ỹ0 may not hold.

y
�

0

yo

� yo

-y�0

y�0

Fig. 1. Example of trajectories of (12) for parameter −k

Therefore, let us consider (12) with parameter −k. This simple trick yields the following

−y0 = z2(π,0,y0,0)> z2(π,0,y0,−k)� ỹ0.

By Remark 5, the solutions of system (12) with parameter k obtained by reversing the time
are the same as the solutions of (12) with parameter −k. Hence, let us denote by y0 such
value that the trajectory of the system with parameter −k starting from the point (0,y0)
intersects y-axis for the first time at the point (0,y0). Observe that, due to earlier remarks, if
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we consider the system (12) with parameter k, then the above notation can be interpreted as
ỹ0 = y0. Therefore, our goal is to show that −y0 < y0.

Because of the symmetry of system (12) and the fact that the trajectories do not intersect
we obtain the required inequality (see figure 1). Hence, for the system (12) with parameter k
it holds that −y0 < y0 = ỹ0. As a consequence

pk(y0) = y0 + ỹ0 > y0 +(−y0) = 0.

Arguments similar to those used in case 1 end the proof.

Lemma 14. Suppose that y0 > 0 is a zero of ξ and ξ ′(y0) �= 0. Then for any neighbourhood[
y−0 ,y

+
0
]
, 0 < y−0 < y0 < y+0 < ∞, there exists a positive constant k0 such that ∀k ∈ [0,k0] the

function pk has a zero in the neighbourhood
(
y−0 ,y

+
0
)
.

Proof. Let us take a neighbourhood
[
y−0 ,y

+
0
]

of the point y0 where ξ has no zeroes other
than y0. It can be done because due to our assumptions ξ changes its sign in y0.

Without loss of generality we can assume that ξ (y−0 )< 0 and ξ (y+0 )> 0. In other words,
it means that ∂ z2

∂k (π,0,y
−
0 ,0) < 0 and ∂ z2

∂k (π,0,y
+
0 ,0) > 0. Smoothness of Flows Theorem

yields ∂ z2
∂k ∈C1 in respect to all variables. Because of that regularity, there exists a positive

constant k0 such that for all k ∈ [−k0,k0] we have ∂ z2
∂k (π,0,y

−
0 ,k)< 0 and ∂ z2

∂k (π,0,y
+
0 ,k)> 0.

Hence, by Lemma 13 we obtain

∀k ∈ (0,k0] pk(y−0 )< 0 ∧ pk(y+0 )> 0.

Finally, continuity of pk implies that for every k ∈ (0,k0] it has a zero in the interval
(
y−0 ,y

+
0
)
.

Let us recall a basic property of continuous functions.

Lemma 15. Suppose that f : R×R→ R is continuous in respect to both variables and
f (·,0) is positive or negative on a closed interval [a,b] ⊂ R. Then there exists a positive
constant k0 such that for every k ∈ [−k0,k0] we have f (x,k) · f (x,0)> 0 for all x ∈ [a,b].

Lemma 16. Suppose that y0 > 0 is a zero of ξ and ξ ′(y0) �= 0. Then there exists a > 0
such that for every neighbourhood of the form [y0− ã,y0 + ã] where ã ∈ (0,a] there exists
k̃0(ã) > 0 such that for every k ∈

(
0, k̃0(ã)

]
the function pk has exactly one zero in the set

[y0− ã,y0 + ã].

Proof. Let us choose a > 0, small enough such that in the neighbourhood [y0−a,y0 +a]
we have ξ ′(y) �= 0. It can be done because ξ ′(y0) �= 0 and ξ ∈ C1. Taking any ã ∈ (0,a]
and using Lemma 14 we get that there exists k0(ã)> 0 such that for every k ∈ (0,k0(ã)] the
function pk has a zero in the set (y0− ã,y0 + ã).
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Now, let us take any x ∈ [y0− ã,y0 + ã] and k̃0(ã) ∈ (0,k0(ã)] which we will choose later.
We want to study the sign of ∂ pk′

∂y (x) for a fixed k′ ∈ (0, k̃0(ã)]. Observe that under the
previous assumptions we have that pk ∈C2 which allows us to use Schwarz’s Theorem:

∂ pk′

∂y
(x) =

∂ p0

∂y
(x)+

∫ k′

0

∂
∂k

(
∂ pk

∂y
(x)
)

dk =
∫ k′

0

∂
∂y

(
∂ pk

∂k
(x)
)

dk. (13)

Obviously, p0(y) ≡ 0 because for k = 0 all trajectories are closed. Observe that (due to the
choice of the constant a) the function ∂

∂y

(
∂ pk
∂k |k=0 (·)

)
= ∂ξ

∂y (·) has a constant sign in the

set [y0− ã,y0 + ã]. Moreover, the function ∂
∂y

(
∂ pk
∂k (·)

)
is continuous in respect to both vari-

ables. From Lemma 15, there exists a positive constant k̃0 (ã) such that k̃0(ã)� k0(ã) and the
function ∂

∂y

(
∂ pk
∂k (·)

)
has a constant sign in the set [y0− ã,y0 + ã] for any k ∈

[
0, k̃0(ã)

]
. Be-

cause of that, the last integral in (13) has a constant sign. Moreover, since x ∈ [y0− ã,y0 + ã]
has been chosen freely, for every k ∈ (0, k̃0(ã)] the function ∂ pk

∂y (·) has a constant sign in
[y0− ã,y0 + ã]. Which means that pk has only one zero in [y0− ã,y0 + ã].

Remark 17. By using arguments similar to those in the proof of Lemma 16 one can show
that if ξ ′(0) �= 0 then there exists a positive constant a such that for every interval [0, ã]
where ã ∈ (0,a] there exists k̃0(ã) > 0 such that for all k ∈ (0, k̃0(ã)] the function pk(·) has
exactly one zero in the set [0, ã], which is obviously y = 0 .

Let us finally present the proof of Theorem 12. It is worth mentioning that, along with
Remark 17, it also gives us the result about similarity of ξ and pk on the closed sets [a,b]⊂
R+∪{0}.

Proof (of Theorem 12). Let us take a set [a,b] ⊂ R+ which satisfies all of the conditions.
For every yi we use Lemma 16 and choose the size of every neighbourhood Ui (of yi) so
that they are pairwise disjoint for i = 1,2, . . . ,n. Now we have n neighbourhoods of zeros
and in every Ui there exists exactly one zero of pk if only values of k are smaller than some
positive value k̃i. We choose k̃ := min

{
k̃1, k̃2, . . . , k̃n

}
. Obviously, k̃ is positive and we see

that for k ∈ (0, k̃] there is a unique zero of pk in every neighbourhood Ui. Now we apply
Lemma 15 and then Lemma 13 to ∂ z2

∂k (π,0,y,k) and to every connected component of the

set U := [a,b]\
n⋃

i=1
Ui. We obtain upper bounds k0,k1, . . . ,kn > 0 for such positive k that

pk(y) · ξ (y) > 0 in the corresponding set. We take the value k := min{k0,k1, . . . ,kn} > 0
such that for every k ∈ (0,k ] we have: pk(y) · ξ (y) > 0 in the set U . Finally, taking K :=

min
{

k̃,k
}
> 0 gives that ξ ≈

[a,b]
pk holds for every k ∈ (0,K].
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5. APPLICATION

Let us consider the family of differential equations given by:

ẍ+(A+Bcos(x)) ẋ+Cx = 0, A,B ∈ R, C > 0. (14)

By the remarks in section 2 it is enough to consider the following family of differential
equations:

ẍ+ k(a− cos(x))ẋ+ x = 0 a ∈ R, k > 0. (15)

In (15) we skipped the trivial case when B = 0 because in that case one can find the explicit
solutions of equation (14).

Using pretty much the same methods as in the proof of Liénard’s Theorem the following
generalization can be easily shown.

Theorem 18 (Generalization of Liénard’s Theorem). Let us consider an ordinary differential
equation given by:

ẍ+ f ′(x)ẋ+g(x) = 0, (16)

where f ,g ∈C1(R) satisfy the following conditions:

1. g(x) · x > 0 for all x �= 0.

2. f (0) = 0, f ′(0)< 0.

3. ∃ a+ > 0, a− < 0 such that liminf
x→∞

f (x)> a+ and limsup
x→−∞

f (x)< a−

Then equation (16) has a periodic solution. Moreover, under the additional assumptions:

• the functions f , g are odd,

• f (x) increases monotonically for x > β , where β is a single positive zero of f .

equation (16) has exactly one periodic solution and it is stable.

Theorem 18 allows us to conclude that (15) has a periodic solution for a ∈ (0,1). Fur-
thermore, by using the Bendixson’s negative criterion one can prove that for |a| ≥ 1 equation
(15) has no periodic solutions. Unfortunately, it does not say anything about periodic solu-
tions for a∈ (−1,0]. To obtain any information about them we are going to use Theorem 12.

Therefore, let us write equation (15) in the form:{
ẋ =−k(ax− sin(x))+ y, a ∈ R, k > 0,
ẏ =−x.

(17)
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Fig. 2. Function ξ for various values of the parameter a

Using Lemma 9 one can obtain that the function ξ has the form:

ξ (y) =
(ay

2
− J1(y)

)
π.

Below, in figure 2 we present ξ for different values of the parameter a.

Obviously, it is possible to choose a parameter a such that for any n∈N the function ξ has
exactly n positive zeros (y1, . . . ,yn) and what is more, ξ ′(yi) �= 0 for i= 1, . . . ,n. Now, we can
choose a positive value M that max{y1,y2, . . . ,yn} < M. Theorem 12 and Remark 17 give
that for sufficiently small positive values of k the relation ξ ≈

[a,b]
pk is valid in the set [0,M]. In

other words, for every n ∈ N and sufficiently large M > 0 one can find parameters a,k such
that the function pk for system (17) has exactly n zeros (periodic solutions) in the set [0,M].

Despite the fact that the above result about similarity of pk and ξ is obtained only for
sufficiently small k it is worth mentioning that ξ seems to remain similar to pk even for
larger values of k. As for example in figure 3 we present the function p1 which has been
calculated numerically. It suggests that this method of analysis can be helpful as a prelimi-
nary assessment of the solutions’ behaviour for these types of Liénard’s equation. Moreover,
since this method requires a minimum of computational complexity compared to solving the
equation for many different parameters it seems to be cost-effective when f depends on some
additional parameters.
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Fig. 3. Function p1 for various values of parameter a
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Abstract: We prove the existence of weak solutions to Kolmogorov’s two equation model of turbulence
in the periodic setting. Kolmogorov’s model forms the basis for modern approaches to modelling turbu-
lences such as k− ε , k−ω . The solution is attained by the consideration of several approximate systems
and derivations of adequate estimates. The result is inspired by [5], where the authors consider the same
system in bounded domain. Additionally, we provide more detailed proof for the reader’s convenience.
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1. INTRODUCTION

Firstly, we provide a short introduction to turbulence modelling and its main idea (see
[17], [16], [6]). Next, we explain necessity of establishing additional equations to the model
of turbulence. Finally, we introduce Kolmogorov’s two equation model and its connection
to the currently used turbulence models.

Turbulent flow is a fluid motion characterized by large velocity and pressure gradients,
i.e., fluctuations. This causes difficulties in finding solutions using numerical methods. In or-
der to correctly resolve such flow field, dense mesh and very short time steps are required.
Thus, the time needed to perform calculations for even relatively simple cases is of the order
of weeks, making it inapplicable for commercial simulations.

In the vast majority of industrial simulations, knowledge of the mean flow is sufficient
to provide answers to the problems considered. Thus, the simplest idea would be to decrease
fluctuations of solutions by considering an average value of velocity and pressure. This is the
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case in RANS (Reynolds-averaged Navier–Stokes), where an average is taken with respect
to time (other plausible averages are, e.g., space average or ensemble average). Now, let
us decompose the velocity v and p:

v(x, t) = v(x, t)+ ṽ(x, t), p(x, t) = p(x, t)+ p̃(x, t),

where v, p are time-averaged values and ṽ, p̃ are fluctuations. We substitute the decomposed
functions to the Navier Stokes system and we obtain (for details see chapter 2 of [17]):

∂v
∂ t

+ v ·∇v−ν divDv+∇p =−div
(

ṽ · ṽ
)
.

The last term on the right hand side can be approximated by the Boussinesq approximation
(see [17])

−ṽ · ṽ = νT (∇v+∇T v)− 2
3

kI,

where νT = k
ω , k – turbulent kinetic energy, ω – dissipation rate. Finally, we obtain

∂v
∂ t

+ v ·∇v−∇ · ((ν +νT )Dv)+∇
(

p+
2
3

k
)
= 0.

We see that to close the system, we need to introduce additional equations for ω and k. For
details, see [17] and [16].

Nowadays, k− ε and k−ω models are most commonly used to calculate k and ω (for
details concerning above-mentioned turbulence models, see [17] and [6]). They bear strong
resemblance to Kolmogorov’s turbulence model in the way they deal with dissipation, sink
and source terms.

In 1941, A.N. Kolmogorov introduced the following system of equations describing tur-
bulent flow ([8], English translation in Appendix A [15]):

v,t +div(v⊗ v)−ν0 div
(

b
ω

D(v)
)
=−∇p, (1)

ω,t +div(ωv)−κ1 div
(

b
ω

∇ω
)
=−κ2ω2, (2)

b,t +div(bv)−κ3 div
(

b
ω

∇b
)
=−bω +κ4

b
ω
|D(v)|2, (3)

divv = 0, (4)

where v – mean velocity, ω – dissipation rate, b – 2/3 of mean kinetic energy, p – sum
of mean pressure and b. The novelty of the Kolmogorov formulation lies in the fact that
prior knowledge of the length scale (size of large eddies) is no longer required – it can
be calculated as

√
b

ω . The physical motivation of proposed system can be found in [15] and
[5]. The mathematical analysis of difficulties in proving the existence of a solution of the
system can also be found in [5].
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Now, we would like to discus the known mathematical results related to the Kolmogorov’s
two-equation model of turbulence. There are four recent results devoted to this problem: [5],
[11], [10], [9]. In the first one, the authors consider the system in a bounded C1,1 domain with
mixed boundary conditions for b and ω and a stick-slip boundary condition for velocity v.
In order to overcome the difficulties related to the last term on the right hand side of (3), the
problem is reformulated and the quantity E := 1

2 |v|2+ 2ν0
κ4

b is introduced. Then, the equation
(3) is replaced by

E,t +div(v(E + p))−2ν0 div
(

κ3b
κ4ω

∇b+
b
ω

D(v)v
)
+

2ν0

κ4
bω = 0.

The existence of a global-in-time weak solution of the reformulated problem is established.

In [11], the authors consider the system (1)-(4) in periodic domain. It proves the existence
of a global-in-time weak solution, but due to the presence of the strongly nonlinear term
b
ω |D(v)|2, the weak form of equation (3) has to be corrected by a positive measure μ , which
is zero, provided that a weak solution is sufficiently regular. Some estimates for ω and b are
obtained as well.

In [10], the authors consider the system (1)-(4) in periodic setting in order to show the
existence of local strong solutions. Local solutions are obtained, provided that the initial
data are in H2. Also, b and ω are required to be cut off from zero.

In [9], the authors show the existence of global strong solutions of the system (1)-(4), pro-
vided that the initial data fulfill the smallness condition. The smallness condition effectively
restricts the initial data to ones with small L1 norm of b0 and L2 norm of v0. Addition-
ally, all initial data are required to have small "oscillations" expressed in terms of L2 norms
of Laplacians.

The present paper was mainly inspired by [5] and aims to establish analogous result in pe-
riodic setting. Additionally, we aim to provide more detailed proofs, making presented argu-
ments more friendly to less experienced readers.

2. NOTATION AND MAIN RESULT

Assume that Ω = ∏3
i=1(0,2π), T > 0 and ΩT = Ω× (0,T ). We shall consider the fol-

lowing problem:

v,t +div(v⊗ v)−ν0 div
(

b
ω

D(v)
)
=−∇p, (5)

ω,t +div(ωv)−κ1 div
(

b
ω

∇ω
)
=−κ2ω2, (6)

b,t +div(bv)−κ3 div
(

b
ω

∇b
)
=−bω +κ4

b
ω
|D(v)|2, (7)
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divv = 0 (8)

in ΩT with periodic boundary condition on ∂Ω and the initial condition

v|t=0 = v0, ω|t=0 = ω0, b|t=0 = b0. (9)

Here, ν0,κ1, . . . ,κ4 are positive constants. For simplicity, we assume that all constants
except κ2 are equal to one. The reason is that κ2 plays an important role in the a priori
estimates.
Now, we specify the initial data. Let us assume in a standard way, that the initial condition
for velocity field fulfills

v0 ∈ L2
div(Ω). (10)

For turbulent kinetic energy, we assume that initially it is as follows:

b0 ∈ L1(Ω), lnb0 ∈ L1(Ω), b0 > 0. (11)

Finally, the initial values of frequency ω are as follows:

ω0 ∈ L∞(Ω), 0 < ωmin ≤ ω0 ≤ ωmax < ∞. (12)

Now, we introduce definitions of function spaces. By W 1,r(Ω), where r ≥ 1, we denote the
space of restrictions to Ω of the functions, which belong to the space

{u ∈W 1,r
loc (R

3) : u(·+ k2πei) = u(·) for k ∈ Z, i = 1,2,3},

where {ei}3
i=1 forms the standard basis in R3. Additionally, we define W 1,r

div (Ω) in the fol-
lowing way:

W 1,r
div (Ω) = {v ∈W 1,r(Ω)3 : divv = 0 in Ω,

∫
Ω

vdx = 0}.

Dual spaces of W 1,r and W 1,r
div will be denoted, respectively, in the following way:

W−1,r′(Ω) :=
(
W 1,r(Ω)

)∗
, W−1,r′

div (Ω) :=
(

W 1,r
div (Ω)

)∗
,

where 1
r +

1
r′ = 1. By ‖·‖p and ‖·‖1,p, we denote classical norms in Lp(Ω) and W 1,p(Ω),

respectively:

‖ f‖p =

(∫
Ω
| f (x)|pdx

) 1
p

, ‖ f‖1,p =

(
‖ f‖p

p +
3

∑
i=1
‖∂xi f‖p

p

) 1
p

.

Now, we define the following transformation:

〈·, ·〉 : W−1,r×W 1,r′ → R
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such that for f ∈W−1,r(Ω) and g ∈W 1,r′(Ω), where 1
r +

1
r′ = 1, we have

〈 f ,g〉 := f (g).

Thus, we can define norm in dual spaces of Sobolev spaces:

‖ f‖−1,r = sup
ϕ∈W 1,r′(Ω):‖ϕ‖

W1,r′ (Ω)
=1
|〈 f ,ϕ〉| .

Also, for f ∈ Lr(Ω) and g ∈ Lr′(Ω), where 1
r +

1
r′ = 1, we define (·, ·) in the following way:

( f ,g) =
∫

Ω
f (x)g(x)dx.

Additionally, we define

Lr(Ω) :=W 1,r(Ω)
‖·‖r , L2

div(Ω) :=W 1,2
div (Ω)

‖·‖2

and

Lr
0(Ω) := {v ∈ Lr(Ω) :

∫
Ω

vdx = 0}.

Finally, we define the space that will be useful for considerations related to kinetic turbulent
energy b

ε = {b ∈ L∞ (0,T,L1(Ω)
)

: b > 0 almost everywhere in ΩT ,

lnb ∈ L∞(0,T,L1(Ω)),

b ∈ Lλ (0,T,W 1,λ (Ω)∀λ ∈ [1,2)}.
Now, we are ready to present the main theorem, which states the existence result to system
(5)-(8).

Theorem 1. Let us assume that the initial data satisfy (10)-(12). Then, there exists a quadru-
ple (v,b,ω, p) such that

v ∈ L2(0,T,W 1,2
div (Ω))∩W 1,q(0,T,W−1,q(Ω)) for all q ∈

[
1,

16
11

)
, (13)

b ∈ ε, (14)

∂tb ∈M
(
0,T,W−1,q(Ω)

)
for all q ∈

[
1,

8
7

)
, (15)

p ∈ Lq (0,T,Lq
0(Ω)

)
for all q ∈

[
1,

16
11

)
, (16)

E ∈W 1,q (0,T,W−1,q(Ω)
)

for all q ∈
[
1,

80
79

)
, (17)

bω ∈ Lq(0,T,W 1,q(Ω)) for all q ∈
[
1,

16
11

)
, (18)
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ωmin

1+κ2ωmint
≤ ω ≤ ωmax

1+κ2ωmaxt
almost everywhere in ΩT , (19)

where

E :=
|v|2
2

+b. (20)

In addition, pressure p can be decomposed as p = p1 + p2, where

p1 ∈ Lq (0,T,Lq
0(Ω)

)
for all q ∈

[
1,

16
11

)
, (21)

p2 ∈ L5/3
(

0,T,L5/3
0 (Ω)

)
. (22)

After denoting

μ :=
b
ω
, (23)

the quadruple (v,b,ω, p) satisfies the following identities:∫ T

0
〈v,t ,w〉− (v⊗ v,∇w)+(μD(v),D(w))dt =

∫ T

0
(p,divw)dt

∀w ∈ L∞ (0,T,W 1,∞(Ω)
)
,

(24)

∫ T

0
〈∂tE,z〉− (v(E + p) ,∇z)+(μ∇b,∇z)+(μD(v)v,∇z)dt =−

∫ T

0
(bω,z)dt

∀z ∈ L∞ (0,T,W 1,∞(Ω)
)
,

(25)

∫ T

0
〈∂tω,z〉− (vω ,∇z)+

(
∇(bω)

ω
−∇b,∇z

)
dt =−κ2

∫ T

0

(
ω2,z

)
dt

∀z ∈ L∞ (0,T,W 1,∞(Ω)
)
,

(26)

with the initial data fulfilling

lim
t→0+

‖v(t)− v0‖2 +‖ω(t)−ω0‖2 +‖b(t)−b0‖1 = 0. (27)

Moreover, the following inequality holds:∫ T

0
〈b,t ,z〉+(μ∇b,∇z)− (vb,∇z)zdt ≥

∫ T

0

(−bω +μ|D(v)|2,z)dt

∀z ∈C
(
0,T,W 1,∞(Ω)

)
such that z≥ 0 almost everywhere in ΩT .

(28)

In order to prove above result, we will establish several existence results to auxiliary
problems, which approximate the problem (5)-(8). Using established estimates in those ap-
proximations, it will be plausible to obtain the existence result of the considered system.
Now, we will focus on outlining auxiliary lemmas and notation.
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3. AUXILIARY RESULTS AND ADDITIONAL NOTATION

Firstly, let us recall that Ω = ∏3
i=1(0,2π), T > 0 and ΩT = Ω× (0,T ). To define ap-

proximate problems, we need to define the cut-off function

Tm(s) =

{
s if |s| ≤ m
msgn(s) if |s|> m

. (29)

Now, we define the function Θm, which is the primitive function of Tm:

Θm(s) :=
∫ s

0
Tm(τ)dτ. (30)

Next, we consider a smooth, non-increasing function G, such that G(s) = 1 when s ∈ [0,1]
and G(s) = 0 for s≥ 2. For m ∈ R+, we define

Gm(s) := G
( s

m

)
(31)

and we denote

Γm(s) :=
∫ s

0
Gm(τ)dτ. (32)

In order to avoid confusion, we define z+ = max{z,0} and z− = min{z,0}.
Additionally, by {wi}∞

i=0 we denote an orthogonal basis of W 1,2
div (Ω), which is also orthog-

onal in L2
div (such a basis exists due to Lemma 6). By {zi}∞

i=0, we denote an orthogonal basis
of W 1,2(Ω), which is also an orthogonal in L2(Ω).

In the proof of the main theorem, we will need to reconstruct pressure. The following
lemma will enable us to do so:

Lemma 2 (see Lemma C.1 in [3]). Let q,q′ ∈ (1,∞), and such that 1
q +

1
q′ = 1. Then, there

exists linear, bounded operator

L : Lq (Ω)3×3 → Lq(Ω), (33)

such that for all ϕ ∈W 2,q′(Ω) and any fixed B ∈ Lq (Ω)3×3 the following relation holds:

(L(B),Δϕ) =
(
B,∇2ϕ

)
,

∫
Ω
L(B)dx = 0. (34)

Proof. For B ∈ D(Ω)3×3 we set the system

ΔL(B) = divdivB in Ω, (35)∫
Ω
L(B)dx = 0 (36)
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equipped with periodic boundary conditions. From classical theory of Poisson equation, the
solution to system (35)-(36) exists and is smooth. Thus, we can writeL(B) :=(Δ)−1 divdivB.
Operator L is linear and continuous as a mapping from W 1,q(Ω)3×3 to W 1,q(Ω) for all
q ∈ (1,∞). We also see that multiplying the equation (35) by arbitrary ϕ ∈W 2,q′(Ω), and
integrating by parts four times, we get (34). Now, we focus on showing boundedness of op-
erator L : Lq (Ω)3×3∩D (Ω)3×3 → Lq(Ω). To do this, we need to find space-periodic ϕ such
that

Δϕ = |L(B)|q−2L(B)− 1
|Ω|

∫
Ω
|L(B)|q−2L(B)dx in Ω, (37)∫

Ω
ϕdx = 0. (38)

From Lq theory for Poisson equation, there exists a constant C > 0 depending only on Ω and
q such that

∫
Ω
|∇2ϕ|q′dx≤C

∫
Ω

∣∣∣∣|L(B)|q−2L(B)− 1
|Ω|

∫
Ω
|L(B)|q−2L(B)dx

∣∣∣∣q′ dx

≤C
∫

Ω
|L(B)|qdx,

(39)

where 1
q +

1
q′ = 1. Since B is smooth, the integral on the right-hand side is finite for any

q ∈ (1,∞). Now, plugging (37) into (34) we get using of the fact that
∫

ΩL(B)dx = 0 and
(39), the following inequality:∫

Ω
|L(B)|qdx =

(
B,∇2ϕ

)≤ ‖B‖q

∥∥∇2ϕ
∥∥

q′ ≤C‖B‖q ‖L(B)‖q−1
q .

We obtained ‖L(B)‖q≤C‖B‖q for B∈D(Ω)3×3. SinceD(Ω)3×3 is a dense subset of Lq(Ω)3×3,
the operator can be uniquely extended to L : Lq (Ω)3×3 → Lq(Ω). Moreover, the system (34)
can be established for B ∈ Lq(Ω)3×3 by considering a sequence of smooth {Bn} such that
Bn → B in Lq(Ω)3×3 and applying weak convergence. This completes the proof.

For the completeness of presented arguments, we recall Div-Curl lemma.

Lemma 3 (see:[14, 12] ). Let Ω be an open set of RN, N ≥ 2. Let w be a function such that
w : RN → R. We denote

div(w) =
n

∑
i=1

∂wi

∂xi
, Ci j(w) =

∂wi

∂x j
− ∂w j

∂xi
.

Let p,q > 1 such that 1
p +

1
q = 1. For any n, let an ∈ [Lp(Ω)]N, bn ∈ [Lq(Ω)]N with properties

an n→∞
⇀ a weakly in [Lp(Ω)]N ,

bn n→∞
⇀ b weakly in [Lq(Ω)]N ,
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{div(an)}∞
n=0 lies in compact subset of W−1,p(Ω) (40)

{C (bn)}∞
n=0 lies in compact subset of W−1,q(Ω)N×N . (41)

Then,

anbn n→∞
⇀ ab in sense of distributions.

Now, let us formulate a simple corollary of the Vitali convergence lemma.

Lemma 4 (see Corollary 4.5.5 in [1]). Let Ω⊂RN be bounded and un : Ω→R be a sequence
in Lp(Ω) for some p > 1. Suppose that

1. un → u almost everywhere in Ω,

2. the sequence un is bounded in Lp(Ω).

Then,

un → u in Lr(Ω) for all 1≤ r < p.

Lemma 5. Let p,q ∈ (1,∞) such that 1
q +

1
p < 1. Also, we assume that

un ⇀ u weakly in Lp(Ω) and vn → v strongly in Lq(Ω).

Then,

unvn ⇀ uv weakly in Ls(Ω),

where 1
s =

1
p +

1
q .

Proof. Let s′ be such that 1
s′ +

1
s = 1. We see that 1

s′ +
1
p +

1
q = 1. Additionally, let ϕ ∈ Ls′(Ω).

Then we have ∫
Ω

unvnϕdx =
∫

Ω
un (vn− v)ϕdx+

∫
Ω

unvϕdx.

The first integral’s limit is zero due to strong convergence of vn, boundedness of un and the
following inequality:∣∣∣∣∫Ω

un (vn− v)ϕdx
∣∣∣∣≤ ‖un‖p ‖vn− v‖q ‖ϕ‖s′

n→∞−→ 0.

Due to the fact that vϕ ∈ Lp′(Ω), where 1
p′ =

1
s′ +

1
q , and weak convergence of un, we have∫

Ω
unvϕdx→

∫
Ω

uvϕdx.

This completes the proof of the lemma.
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Lemma 6 (see: Theorem 2.24 in [13]). There exists a family of functionsN = {a1,a2,a3, . . .}
such that

• N is an orthonormal basis in L2
div(Ω),

• a j ∈C∞(Ω),

• N is an orthogonal basis in W 1,2
div (Ω).

Lemma 7 (Aubin–Lions–Simon, see: Theorem II.5.16 in [2]). Let B0 ⊂ B1 ⊂ B2 be three
Banach spaces. We assume that the embedding of B1 in B2 is continuous and that the em-
bedding of B0 in B1 is compact. Let p, r be such that 1≤ p,r ≤ ∞. For T > 0, we define

Ep,r =

{
v ∈ Lp (0,T,B0) ,

dv
dt
∈ Lr (0,T,B2)

}
.

i) If p < ∞, the embedding of Ep,r in Lp (0,T,B1) is compact.
ii) If p = ∞ an if r > 1, the embedding of Ep,r in C0 (0,T,B1) is compact.

Lemma 8 (see: chapter 1.2.b in [7]). Let X be Banach space, T > 0 and 1 ≤ p ≤ ∞. Let
fn → f in Lp(0,T,X). Then, there exists a subsequence fnk such that fnk → f in X almost
everywhere.

4. K-APPROXIMATION

In order to prove Theorem 1, we will establish a series of existence results to approximate
problems. We consider following problem:

v,t +div(Gk
(|v|2)v⊗ v)−div(Tk (μ)D(v)) =−∇p, (42)

ω,t +div(ωv)−div
(

b
ω

∇ω
)
=−κ2ω2, (43)

b,t +div(bv)−div
(

b
ω

∇b
)
=−bω +Tk(μ)|D(v)|2, (44)

divv = 0, (45)

in ΩT , where μ = b
ω . The system is equipped with periodic boundary condition and the

following initial condition:

v|t=0 = v0, ω|t=0 = ω0, b|t=0 = bk
0(x) = b0(x)+

1
k
. (46)

The following theorem states the existence result for this system:
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Theorem 9. Let us fix k ∈ N+. Then, there exists a triple (v,b,ω) such that

v ∈ L2(0,T,W 1,2
div (Ω))∩W 1,2(0,T,W−1,2

div (Ω)), (47)

b ∈ Lq (0,T,W 1,q(Ω)
)∩L∞ (0,T,L1(Ω)

)
for all q ∈

[
1,

5
4

)
, (48)

∂tb ∈ L1 (0,T,W−1,q(Ω)
)

for all q ∈
[
1,

80
79

)
, (49)

ω ∈ L2 (0,T,W 1,2(Ω)
)∩L∞ (0,T,L∞(Ω)) , (50)

∂tω ∈ Lq (0,T,W−1,q(Ω)
)

for all q ∈
[
1,

16
11

)
, (51)

ωmin

1+κ2ωmint
≤ ω ≤ ωmax

1+κ2ωmaxt
almost everywhere in ΩT , (52)

1

k (1+κ2ωmint)
1

κ2

≤ b, almost everywhere in ΩT , (53)

which solves the problem (42)-(46) in the following sense:

〈v,t ,w〉−
(

Gk

(
|v|2
)

v⊗ v,∇w
)
+(Tk (μ)D(v),D(w)) = 0

∀w ∈W 1,2
div (Ω) a.a. t ∈ (0,T ),

(54)

〈b,t ,z〉− (bv,∇z)+(μ∇b,∇z) =
(−bω +Tk (μ) |D(v)|2,z)

∀z ∈W 1,∞(Ω)a.a. t ∈ (0,T ),
(55)

〈ω,t ,z〉− (ωv,∇z)+(μ∇ω,∇z) =−κ2
(
ω2,z

)
∀z ∈W 1,∞(Ω)a.a. t ∈ (0,T ),

(56)

where μ = b
ω . The initial data are attained strongly in the following sense:

lim
t→0+

‖v(t)− v0‖2 +‖ω(t)−ω0‖2 +‖b(t)−bk
0‖1 = 0. (57)

Moreover, for all λ ∈ (0,1], the following (k-independent) estimate holds:

sup
t∈(0,T )

(‖b(t)‖1 +‖ lnb(t)‖1 +‖v(t)‖2
2
)
+
∫

ΩT

(
1+b−1)Tk(μ)|D(v)|2dxdt

+
∫

ΩT

μ
b1+λ |∇b|2 +μ |∇ω|2 +μ

8
3−λ dxdt

≤C(λ−1,v0,b0,ω0,ωmin,ωmax).

(58)

Moreover, the following inequality holds for almost all times t ∈ (0,T ):(√
b(t),ϕ

)
−
∫ t

0

(√
bv,∇ϕ

)
dτ +

∫ t

0

(√
b

2ω
∇b,∇ϕ

)
dτ

≥ 1
2

∫ t

0

(√
bω,ϕ

)
dτ +

(√
bk

0,ϕ
)

∀ϕ ∈ D(Ω),ϕ ≥ 0.

(59)
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5. (N,K)-APPROXIMATION

In order to prove Theorem 9, we introduce the next level of approximation. To define this
approximate problem, we first smooth out the initial conditions for b and v. First, we find
a sequence of smooth, non-negative functions bn

0 such that

bn
0 → b0 strongly in L1(Ω) (60)

and define

bn,k
0 := bn

0 +
1
k
. (61)

Now, let {wi}∞
i=0 be a smooth basis of W 1,2

div (Ω) that is orthonormal in L2(Ω). It exists due
to Lemma 6. Using the chosen basis, we introduce the approximated initial condition for
velocity vn as

vn
0 =

n

∑
i=0

(v0,wi)wi.

Having approximated initial conditions, we consider the following problem:

v,t +div(Gk
(|v|2)v⊗ v)−div(Tk (μn)D(v)) =−∇p, (62)

ω,t +div(ωv)−div(Tn (μn)∇ω) =−κ2ω2, (63)

b,t +div(bv)−div(Tn (μn)∇b) =−bω +
Tk(μn)|D(v)|2
1+n−1|D(v)|2 , (64)

divv = 0 (65)

in ΩT , where

μn =
b
ω

+
1
n
. (66)

Additionally, the problem is equipped with periodic boundary condition and the following
initial condition:

v|t=0 = vn
0, ω|t=0 = ω0, b|t=0 = bn,k

0 (x). (67)

The following theorem states the existence result for this system:

Theorem 10. Let us fix k ∈ N+, n ∈ N+. Then, there exists a triple (c,b,ω) such that

c ∈W 1,∞(0,T )n, (68)

b ∈ L2 (0,T,W 1,2(Ω)
)∩L∞ (0,T,L2(Ω)

)
, (69)

∂tb ∈ L2 (0,T,W−1,2(Ω)
)
, (70)

ω ∈ L2 (0,T,W 1,2(Ω)
)∩L∞ (0,T,L∞(Ω)) , (71)

∂tω ∈ L2 (0,T,W−1,2(Ω)
)
, (72)
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ωmin

1+κ2ωmint
≤ ω ≤ ωmax

1+κ2ωmaxt
almost everywhere in ΩT , (73)

1

k (1+κ2ωmint)
1

κ2

≤ b almost everywhere in ΩT , (74)

which solves the problem (62)-(67) in the following sense:

(v,t ,wi)−
(

Gk

(
|v|2
)

v⊗ v,∇wi

)
+(Tk (μn)D(v),D(wi)) = 0

for all i = 1, . . . ,n,
(75)

〈b,t ,z〉− (bv,∇z)+(Tn(μn)∇b,∇z)+(bω,z) =
(

Tk (μn) |D(v)|2
1+n−1|D(v)|2 ,z

)
∀z ∈W 1,2(Ω)a.a. t ∈ (0,T ),

(76)

〈ω,t ,z〉− (ωv,∇z)+(Tn(μn)∇ω,∇z) =−κ2
(
ω2,z

)
∀z ∈W 1,2(Ω)a.a. t ∈ (0,T ),

(77)

where μn = b
ω + 1

n and

v(t,x) :=
n

∑
i=1

ci(t)wi(x). (78)

The initial data are attained strongly in the following sense:

lim
t→0+

‖v(t)− vn
0‖2 +‖ω(t)−ω0‖2 +‖b(t)−bn,k

0 ‖1 = 0. (79)

Moreover, the following inequality holds for almost all times t ∈ (0,T ):(√
b(t),ϕ

)
−
∫ t

0

(√
bv,∇ϕ

)
dτ +

∫ t

0

(
Tn(μn)∇

√
b,∇ϕ

)
dτ

≥−1
2

∫ t

0

(√
bω,ϕ

)
dτ +

(√
bn,k

0 ,ϕ
)

∀ϕ ∈ D(Ω),ϕ ≥ 0.
(80)

6. (M,N,K)-APPROXIMATION

Once again, we will approximate the initial data for turbulent kinetic energy. We introduce
bm,n,k

0 in the following way:

bm,n,k
0 =

m

∑
i=0

(bn,k
0 ,zi)zi,
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where {zi}∞
i=0 denotes the orthogonal basis of W 1,2(Ω) and orthonormal in L2(Ω). Using

this, we consider the following problem:

v,t +div(Gk
(|v|2)v⊗ v)−div(Tk (μn,m)D(v)) =−∇p, (81)

ω,t +div(ωv)−div(Tn (μn,m)∇ω) =−κ2ω2, (82)

b,t +div(bv)−div(Tn (μn,m)∇b) =−b+ω +
Tk(μn,m)|D(v)|2
1+n−1|D(v)|2 , (83)

divv = 0 (84)

in ΩT , where μn,m = b+
ω+ 1

m
+ 1

n . Additionally, the problem is equipped with the periodic

boundary condition and the following initial condition:

v|t=0 = vn
0, ω|t=0 = ω0, b|t=0 = bm,n,k

0 (x). (85)

The following theorem states the existence result for this system:

Theorem 11. Let us fix k ∈ N+, n ∈ N+ and m ∈ N+ such that m≥ ωmax. Then, there exists
a triple (c,d,ω) such that

c ∈W 1,∞(0,T )n, (86)

d ∈W 1,∞(0,T )m, (87)

ω ∈ L2 (0,T,W 1,2(Ω)
)∩L∞ (0,T,L∞(Ω)) , (88)

∂tω ∈ L2 (0,T,W−1,2(Ω)
)
, (89)

ωmin

1+κ2ωmint
≤ ω ≤ ωmax

1+κ2ωmaxt
almost everywhere in ΩT , (90)

which solves the problem (81)-(85) in the following sense:

(v,t ,wi)−
(

Gk

(
|v|2
)

v⊗ v,∇wi

)
+(Tk (μn,m)D(v),D(wi)) = 0

for all i = 1, . . . ,n,
(91)

(∂tb,zi)− (bv,∇zi)+(Tn(μn,m)∇b,∇zi)+(b+ω,zi) =

(
Tk (μn,m) |D(v)|2
1+n−1|D(v)|2 ,zi

)
for all i = 1, . . . ,m,

(92)

〈ω,t ,z〉− (ωv,∇z)+(Tn(μn,m)∇ω,∇z)+κ2
(
ω2,z

)
= 0

∀z ∈W 1,2(Ω) a.a. t ∈ (0,T ),
(93)

where

μn,m =
b+

ω + 1
m

+
1
n
, (94)

v(t,x) :=
n

∑
i=1

ci(t)wi(x), (95)
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b(t,x) :=
m

∑
i=1

di(t)zi(x). (96)

The initial data are attained strongly in the following sense:

lim
t→0+

‖v(t)− vn
0‖2 +‖ω(t)−ω0‖2 +‖b(t)−bm,n,k

0 ‖2 = 0. (97)

7. PROOF OF THEOREM 9

Proof of theorem 11. Let us recall that {zi}∞
i=1 and {wi}∞

i=1 denote bases of W 1,2(Ω) and
W 1,2

div (Ω), which are orthogonal in L2(Ω) and L2
div(Ω), respectively. The proof relies on the

Galerkin approximation method. We look for
(
vl,ω l,bl) given as

vl(t,x) =
n

∑
i=1

cl
i(t)wi(x), (98)

bl(t,x) =
m

∑
i=1

dl
i (t)zi(x), (99)

ω l(t,x) =
l

∑
i=1

el
i(t)zi(x) (100)

and we require that coefictients cl = (cl
1, . . . ,c

l
n), dl = (dl

1, . . . ,d
l
m), em = (el

1, . . . ,e
l
l) solve

the following system of ordinary differential equations on (0,T ):(
∂tvl,wi

)
−
(

Gk

(∣∣∣vl
∣∣∣2)vl⊗ vl,∇wi

)
+
(

Tk

(
μ l
)

D(vl),D(wi)
)
= 0

for all i = 1, . . . ,n,
(101)

(
∂tbl,zi

)
−
(

blvl,∇zi

)
+
(

Tn(μ l)∇bl,∇zi

)
+

(
bl
+Tm(ω l

+)−
Tk
(
μ l) |Dvl|2

1+n−1|Dvl|2 ,zi

)
= 0

for all i = 1, . . . ,m,

(102)

(
∂tω l,zi

)
−
(

ω lvl,∇zi

)
+
(

Tn(μ l)∇ω l,∇zi

)
+κ2

(
Tm(ω l)ω l

+,zi

)
= 0

for all i = 1, . . . , l,
(103)

where

μ l =
bl
+

ω l
++ 1

m

+
1
n
. (104)
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We set initial conditions for (cl,dl,el) given by

vl(0) =
n

∑
i=0

(vn
0,wi)wi, bl(0) =

m

∑
i=0

(bm,n,k
0 ,zi)zi, ω l(0) =

l

∑
i=0

(ω0,zi)zi. (105)

The existence of a solution (101)-(105) follows from Carathodory’s theorem. Using esti-
mates established below, a solution can be extended to time interval [0,T ].

7.1. L-INDEPENDENT ESTIMATES

Multiplying the equation (101) by cl
i(t) and summing from i = 1 through l, we get

1
2

d
dt
‖vl‖2

2−
(

Gk

(∣∣∣vl
∣∣∣2)vl⊗ vl,∇vl

)
+
(

Tk

(
μ l
)

D(vl),D(vl)
)
= 0. (106)

We see that(
Gk

(∣∣∣vl
∣∣∣2)vl⊗ vl,∇vl

)
=

1
2

(
Gk

(∣∣∣vl
∣∣∣2)vl,∇

∣∣∣vl
∣∣∣2)=

1
2

(
vl,∇Γk

(∣∣∣vl
∣∣∣2))

=−1
2

(
divvl,Γk

(∣∣∣vl
∣∣∣2))= 0.

Thus, integrating (106) from 0 to T we have

sup
t∈(0,T )

‖vl(t)‖2
2 +

∫
ΩT

Tk(μ l)|Dvl|2dxdt ≤C(‖v0‖2). (107)

Using orthonormality of the basis {wi} in L2(Ω), we deduce that

sup
t∈(0,T )

|cl(t)| ≤C(‖v0‖2). (108)

From the equation (101) and orthonormality of the basis, one can easily deduce

|∂tcl
i| ≤

∣∣∣∣(Gk

(∣∣∣vl
∣∣∣2)vl⊗ vl,∇wi

)∣∣∣∣+ ∣∣∣(Tk

(
μ l
)

D(vl),D(wi)
)∣∣∣

≤ 9
2

∣∣∣∣(Gk

(∣∣∣vl
∣∣∣2)∣∣∣vl

∣∣∣2 , |∇wi|
)∣∣∣∣+ n

∑
j=1

∣∣∣cl
j(t)
∣∣∣(Tk

(
μ l
)

D(w j),D(wi)
)
.

Now, using (29), (32) and the inequality (108), we get

|∂tcl
i| ≤C(k)‖∇wi‖2 +C(n,k)‖∇w‖2

2.

Using the fact that ‖∇w‖2 ≤C(n), we get

sup
t∈(0,T )

|∂tcl(t)| ≤C(n,k). (109)
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Now, multiplying (102) by dl
i (t) and summing from i = 1 through l, we get(

∂tbl,bl
)
−
(

blvl,∇bl
)
+
(

Tn(μ l)∇bl,∇bl
)

=

(
−bl

+Tm(ω l
+)+

Tk
(
μ l) |Dvl|2

1+n−1|Dvl|2 ,b
l

)
.

(110)

Using the fact that divvl = 0 and the definition (29), we get(
∂tbl,bl

)
+

1
n

(
∇bl,∇bl

)
≤
(

kn,bl
)
. (111)

Thus, by Young and Grönwall inequality from (111), we deduce

sup
t∈(0,T )

‖bl(t)‖2
2 +

∫ T

0
‖∇bl‖2

2dt ≤C(k,n). (112)

Using (112) and orthonormality of the basis in L2(Ω), we deduce that

sup
t∈(0,T )

∣∣∣dl
∣∣∣≤C(k,n). (113)

Now, using the equation (102) and orthonormality of the basis in L2(Ω), we get∣∣∣∂tdl
i

∣∣∣≤ ∣∣∣(blvl,∇zi

)∣∣∣+ ∣∣∣(Tn(μ l)∇bl,∇zi

)∣∣∣+ ∣∣∣(−bl
+Tm(ω l

+),zi

)∣∣∣
+

∣∣∣∣∣
(

Tk
(
μ l) |Dvl|2

1+n−1|Dvl|2 ,zi

)∣∣∣∣∣
≤ ‖bl‖2‖vl‖2 ‖∇zi‖∞ +n‖∇bl‖2‖∇zi‖2 +m‖bl‖2‖zi‖2

+
∥∥∥Tk

(
μ l
)
|Dvl|2

∥∥∥
1
‖zi‖∞

≤ ‖bl‖2‖vl‖2 ‖∇zi‖∞ +n sup
t∈(0,T )

∣∣∣dl
∣∣∣ m

∑
j=1
‖∇z j‖2‖∇zi‖2 +m‖bl‖2‖zi‖2

+ k sup
t∈(0,T )

∣∣∣cl
∣∣∣2 n

∑
j=1
‖∇w j‖2

2 ‖zi‖∞ .

Thus, using (113), (112), (108), (107) we obtain

sup
t∈(0,T )

∣∣∣∂tdl
∣∣∣≤C(k,n,m). (114)

Now, multiplying the equation (103) by el
i(t) and summing from i = 1 through l, we get

1
2

d
dt
‖ω l‖2

2 +
(

ω lvl,∇ω l
)
+
(

Tn(μ l)∇ω l,∇ω l
)
=−κ2

(
Tm(ω l)ω l

+,ω
l
)
. (115)
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From divvl = 0 and the fact that the right-hand side is non-negative, we get

1
2

d
dt
‖ω l‖2

2 +
1
n

(
∇ω l,∇ω l

)
≤ 0.

Thus, integrating from 0 to T we obtain

sup
t∈(0,T )

‖ω l(t)‖2
2 +

∫
ΩT
‖∇ω l‖2

2dxdt ≤C(n). (116)

Now, using (116) and the equation (103), we can deduce that∫ T

0

∥∥∥∂tω l
∥∥∥2

W−1,2
dt ≤C(n,m). (117)

Indeed, let us consider ϕ ∈W 1,2(Ω) such that ‖ϕ‖1,2 = 1. We can write ϕ in the following
way:

ϕ =
l

∑
i=1

θizi +ϕ,

where (ϕ,zi) = 0 holds for i = 1, . . . , l.∣∣∣(∂tω l,ϕ)
∣∣∣= ∣∣∣∣∣

(
∂tω l,

l

∑
i=1

θizi

)∣∣∣∣∣
≤
∣∣∣∣∣
(

ω lvl,∇
l

∑
i=1

θizi

)∣∣∣∣∣+
∣∣∣∣∣
(

Tn(μ l)∇ω l,∇
l

∑
i=1

θizi

)∣∣∣∣∣
+κ2

∣∣∣∣∣
(

Tm(ω l)ω l
+,

l

∑
i=1

θizi

)∣∣∣∣∣
≤ ‖ω l‖2

∥∥∥vl
∥∥∥

∞
‖∇

l

∑
i=1

θizi‖2 +n‖∇ω l‖2‖∇
l

∑
i=1

θizi‖2

+mκ2‖ω l‖2‖
l

∑
i=1

θizi‖2.

Due to ‖∑l
i=1 θizi‖2 ≤ ‖ϕ‖2 and ‖∇∑l

i=1 θizi‖2 ≤ ‖ϕ‖1,2 (which both hold thanks to the

Bessel inequality and ‖∑l
i=1 θizi‖2

2 + ‖∇∑l
i=1 θizi‖2

2 =
∥∥∑l

i=1 θizi
∥∥2

1,2 ≤ ‖ϕ‖2
1,2), the Young

inequality and (108), we get∣∣∣(∂tω l,ϕ)
∣∣∣2 ≤C(n)‖ω l‖2

2 ‖ϕ‖2
1,2 +C(n)‖∇ω l‖2

2 ‖ϕ‖2
1,2 +C(m)‖ω l‖2

2‖ϕ‖2
2.

Thus, we get∥∥∥∂tω l
∥∥∥2

−1,2
= sup

ϕ∈W 1,2(Ω),‖ϕ‖1,2=1

∣∣∣(∂tω l,ϕ)
∣∣∣2 ≤C(n,m)‖ω l‖2

2 +C(n)‖∇ω l‖2
2.

Finally, using (116) we deduce (117).
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7.2. TAKING THE LIMIT L→ ∞

Using estimates (108), (109) and (113), (114), we can find a subsequence (which we
do not relabel) such that

cl ⇀∗ c weakly* in W 1,∞(0,T )n,

dl ⇀∗ d weakly* in W 1,∞(0,T )m.

Using the Arzela-Ascoli theorem and estimates (109) and (113), we conclude that

cl → c strongly in C(0,T )n,

dl → d strongly in C(0,T )m.

Based on definitions (98), (99) and the above convergences, we deduce the existence of a se-
quence such that

vl → v =
n

∑
i=1

ciwi strongly in C(0,T,W 1,2
div (Ω)), (118)

bl → b =
m

∑
i=1

dizi strongly in C(0,T,W 1,2(Ω)).

Using (116) and (117) and the Aubin-Lions lemma, we get

ω l ⇀∗ ω weakly* in L2 (0,T ;W 1,2)∩L∞ (0,T ;L2(Ω)
)
, (119)

∂tω l ⇀ ∂tω weakly in L2 (0,T ;W−1,2(Ω)
)
, (120)

ω l → ω strongly in L2 (0,T ;L2(Ω)
)
. (121)

Having the above estimates, it is easy to identify the limit of the system (98)-(105) to get

(∂tv,wi)−
(

Gk

(
|v|2
)

v⊗ v,∇wi

)
+(Tk (μ̃n,m)D(v),D(wi)) = 0

for all i = 1, . . . ,n,
(122)

(∂tb,zi)− (bv,∇zi)+(Tn(μ̃n,m)∇b,∇zi)+(−b+Tm(ω+),zi) =

(
Tk (μ̃n,m) |Dv|2
1+n−1|Dv|2 ,zi

)
for all i = 1, . . . ,m,

(123)

〈∂tω,z〉− (ωv,∇z)+(Tn(μ̃n,m)∇ω,∇z) =−κ2 (Tm(ω)ω+,z)

for all z ∈W 1,2(Ω),
(124)

where

μ̃n,m =
b+

ω++ 1
m

+
1
n
.

To obtain the system (91)-(93), we show the bounds for ω . This will allow us to replace
μ̃n,m with μn,m in equations (122)-(124). Additionally, we will be able to replace Tm(ω+)
and Tm(ω) with ω .
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7.3. MINIMUM AND MAXIMUM PRINCIPLE FOR ω

We apply ω− as a test function in (124) and obtain

〈∂tω,ω−〉− (ωv,∇ω−)+(Tn (μ̃n,m)∇ω,∇ω−) =−κ2 (Tm(ω)ω+,ω−) .

We see that right hand side of the above equality is equal to zero and thus

1
2

d
dt
‖ω−‖2

2− (ω−v,∇ω−)+(Tn (μ̃n,m)∇ω−,∇ω−) = 0.

Using the fact that divv = 0, we conclude that, second term is equal to zero. Additionally,
using nonnegativity of the second term, we finally get

d
dt
‖ω−‖2

2 ≤ 0 so ∀t ∈ (0,T ) ‖ω−(t, ·)‖2
2 = 0. (125)

Thus, using (125), we conclude that ω ≥ 0 almost everywhere in ΩT . From this, we see that
μ̃n,m = μn,m, and thus we can rewrite (124) in the following way:

〈∂tω,z〉− (ωv,∇z)+(Tn(μn,m)∇ω,∇z) =−κ2 (Tm(ω)ω,z)

for all z ∈W 1,2(Ω),
(126)

Similarly, from (122)-(123) we get (91)-(92). Now, we will show the upper bound on ω . Let
us first test the equation (126) using (ω−ωmax)+:〈

∂tω,(ω−ωmax)+
〉− (ωv,∇(ω−ωmax)+

)
+
(
Tn (μn,m)∇ω,∇(ω−ωmax)+

)
=−κ2

(
Tm(ω)ω,(ω−ωmax)+

)
.

From this, using the fact that divv = 0, we have〈
∂t (ω−ωmax)+ ,(ω−ωmax)+

〉
+
(
∇(ω−ωmax)+ v,(ω−ωmax)+

)
+
(
Tn (μn,m)∇(ω−ωmax)+ ,∇(ω−ωmax)+

)
=−κ2

(
Tm(ω)ω,(ω−ωmax)+

)
.

Since divv = 0, this gives us the following inequality:

1
2

d
dt
‖(ω−ωmax)+ ‖2

2 ≤−κ2
(
Tm(ω)ω,(ω−ωmax)+

)≤ 0

so ∀t ∈ (0,T ) ‖(ω(t, ·)−ωmax)+ ‖2 = 0.

Thus, ω ≤ ωmax almost everywhere in ΩT . Let us recall that m≥ ωmax and thus from (126)
we get

〈∂tω,z〉− (ωv,∇z)+(Tn(μn,m)∇ω,∇z) =−κ2
(
ω2,z

)
for all z ∈W 1,2(Ω), (127)
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which is exactly equal to (93). Now, let us test the equation (127) using
(

ω− ωmax
1+κ2ωmaxt

)
+

:〈
∂tω,

(
ω− ωmax

1+κ2ωmaxt

)
+

〉
−
(

ωv,∇
(

ω− ωmax

1+κ2ωmaxt

)
+

)
+

(
Tn (μn,m)∇ω,∇

(
ω− ωmax

1+κ2ωmaxt

)
+

)
=−κ2

(
ω2,

(
ω− ωmax

1+κ2ωmaxt

)
+

)
.

Using the fact that ∇ω = ∇
(

ω− ωmax
1+κ2ωmaxt

)
, we deduce that

1
2

d
dt
‖
(

ω− ωmax

1+κ2ωmaxt

)
+

‖2
2−
(

κ2ω2
max

(1+κ2ωmaxt)2 ,

(
ω− ωmax

1+κ2ωmaxt

)
+

)

≤−κ2

(
ω2,

(
ω− ωmax

1+κ2ωmaxt

)
+

)
.

Thus, we have

1
2

d
dt
‖
(

ω− ωmax

1+κ2ωmaxt

)
+

‖2
2 ≤−κ2

(
ω2− ω2

max

(1+κ2ωmaxt)2 ,

(
ω− ωmax

1+κ2ωmaxt

)
+

)

=−κ2

((
ω +

ωmax

1+κ2ωmaxt

)
,

(
ω− ωmax

1+κ2ωmaxt

)2

+

)
≤ 0.

Thus, by integration and using ω0 ≤ ωmax, we conclude that ω ≤ ωmax
1+κ2ωmaxt almost every-

where in ΩT . Now, we will obtain the bound from below by testing the equation (127)
by

(
ω− ωmin

1+κ2ωmint

)
−

:〈
∂tω,

(
ω− ωmin

1+κ2ωmint

)
−

〉
−
(

ωv,∇
(

ω− ωmin

1+κ2ωmint

)
−

)
+

(
Tn (μn,m)∇ω,∇

(
ω− ωmin

1+κ2ωmint

)
−

)
=−κ2

(
ω2,

(
ω− ωmin

1+κ2ωmint

)
−

)
.

Again, we deduce that the second term is equal to zero and the third one is positive:

1
2

d
dt
‖
(

ω− ωmin

1+κ2ωmint

)
−
‖2

2−
(

κ2ω2
min

(1+κ2ωmint)2 ,

(
ω− ωmin

1+κ2ωmint

)
−

)

≤−κ2

(
ω2,

(
ω− ωmin

1+κ2ωmint

)
−

)
.

97



Przemysław Kosewski

Thus, we have

1
2

d
dt
‖
(

ω− ωmin

1+κ2ωmint

)
−
‖2

2 ≤−κ2

(
ω2− ω2

min

(1+κ2ωmint)2 ,

(
ω− ωmin

1+κ2ωmint

)
−

)

≤−κ2

(
ω +

ωmin

1+κ2ωmint
,

(
ω− ωmin

1+κ2ωmint

)2

−

)
≤ 0.

By integration and the fact that ω0 ≥ ωmin, we conclude that ω ≥ ωmin
1+κ2ωmint almost every-

where in ΩT .
For now on we will refrain from showing the attainment of initial data. The methodology
will be shown for a more complex case, that is, in the proof of Theorem 1.

8. PROOF OF THEOREM 8

We use (vm,ωm,bm) to denote a solution of the system (81)-(85), whose existence was
established in Theorem 11. Our goal is to let m→ ∞ and thus prove Theorem 10.

8.1. M-INDEPENDENT ESTIMATES

Repeating the procedure from (106)-(107), we deduce that

sup
t∈(0,T )

‖vm(t)‖2
2 +

∫
ΩT

Tk(μn,m)|Dvm|2dxdt ≤C, (128)

sup
t∈(0,T )

|cm(t)| ≤C, sup
t∈(0,T )

|∂tcm(t)| ≤C(n,k). (129)

We multiply (92) by dm
i (t) and sum from i = 1 through m to obtain

(∂tbm,bm)− (bmvm,∇bm)+(Tn(μn,m)∇bm,∇bm)

=

(
−bm

+ωm +
Tk (μn,m) |Dvm|2
1+n−1|Dvm|2 ,bm

)
.

Using (29), (94), (90), the fact that n−1|Dvm|2
1+n−1|Dvm|2 ≤ 1 and divvm = 0, we get

(∂tbm,bm)+
1
n
(∇bm,∇bm)≤ (kn, |bm|) .
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Using the Young inequality and Grönwall lemma, we get

sup
t∈(0,T )

‖bm(t)‖2
2 +

1
n

∫
ΩT
‖∇bm‖2

2dt ≤C(n,k). (130)

Using the equation (92) and (130), (128), (94), we conclude (in the same way as in (117)-
(118)) that ∫ T

0
‖∂tbm‖2

W−1,2(Ω) dt ≤C(n,k). (131)

Testing the equation (93) by ωm, we get

1
2

d
dt
‖ωm‖2

2 +(ωmvm,∇ωm)+(Tn(μn,m)∇ωm,∇ωm) =−κ2

(
(ωm)2 ,ωm

)
.

Using the fact that divvm = 0 and (90), (94) we get

1
2

d
dt
‖ωm‖2

2 +
1
n
‖∇ωm‖2

2 ≤ 0,

and thus ∫ T

0
‖ωm‖2

1,2 dt ≤C(n,k). (132)

Using the equation (93) and estimates (128), (132), one can deduce (again, in the same way
as in (117)-(118)) that ∫ T

0
‖∂tωm‖W−1,2(Ω) dt ≤C(n,k). (133)

8.2. TAKING THE LIMIT M → ∞

By the estimate (128) we can find a subsequence (which we do not relabel) such that

cm ⇀∗ c weakly* in W 1,∞(0,T )n.

Using the Arzela-Ascoli theorem and the estimate (129), we conclude that

cm → c strongly in C(0,T )n. (134)

Based on the definition (95) and the convergence (134), one can deduce

vm → v =
n

∑
i=1

ciwi strongly in C(0,T,W 1,2
div (Ω)).
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Using (132), (133) and (90) and the Aubin-Lions lemma, we find a subsequence such that

ωm ⇀ ω weakly in L2 (0,T ;W 1,2(Ω)
)
,

∂tω l ⇀ ∂tω weakly in L2 (0,T ;W−1,2(Ω)
)
,

ωm ⇀∗ ω weakly* in L∞ (0,T ;L∞(Ω)) ,

ωm → ω strongly in L2 (0,T ;L2(Ω)
)
.

Using (130), (131) and the Aubin-Lions lemma, we extract a subsequence such that

bm ⇀∗ b weakly* in L2 (0,T ;W 1,2(Ω)
)∩L∞ (0,T ;L2(Ω)

)
,

∂tbl ⇀ ∂tb weakly in L2 (0,T ;W−1,2(Ω)
)
,

bm → b strongly in L2 (0,T ;L2(Ω)
)
.

Having the above estimates, it is easy to identify the limit of the system (91) - (95) to obtain

(v,t ,wi)−
(

Gk

(
|v|2
)

v⊗ v,∇wi

)
+
(

Tk

(
μ̃n
)

D(v),D(wi)
)
= 0

for all i = 1, . . . ,n,
(135)

〈b,t ,z〉− (bv,∇z)+
(

Tn(μ̃n)∇b,∇z
)
+

⎛⎝b+ω−
Tk

(
μ̃n
)
|D(v)|2

1+n−1|D(v)|2 ,z

⎞⎠= 0

∀z ∈W 1,2(Ω)a.a. t ∈ (0,T ),

(136)

〈ω,t ,z〉− (ωv,∇z)+
(

Tn(μ̃n)∇ω,∇z
)
+κ2

(
ω2,z

)
= 0

∀z ∈W 1,2(Ω)a.a. t ∈ (0,T ),
(137)

where

μ̃n =
b+
ω

+
1
n
. (138)

Now, we will show bounds for b from which we will conclude that μ̃n = μn. By doing
so, we will show the existence of a solution to (75) - (78).

8.3. MINIMUM PRINCIPLE FOR B

Firstly, let us test the equation (136) with z = b−. We get

〈b,t ,b−〉− (bv,∇b−)+
(

Tn(μ̃n)∇b,∇b−
)

= (−b+ω,b−)+

⎛⎝Tk

(
μ̃n
)
|D(v)|2

1+n−1|D(v)|2 ,b−

⎞⎠ .
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Using the fact that divv = 0 to the second term of left hand side, positivity of the third term
on left hand side and non-positivity of the second term on right hand side, we get

1
2

d
dt
‖b−‖2

2 ≤ (−b+ω+,b−) = 0.

Thus, we deduce that b ≥ 0 almost everywhere in ΩT . From this, it follows that μ̃n = μn

and that, the positive part of b in (136) can be dropped. Thus, the existence of a so-
lution to the system (75) - (78) is established. Now, let us test the equation (76) with

z =

(
b− 1

k(1+κ2ωmint)
1

κ2

)
−

. Again, using divv = 0 and positivity of third term on left hand

side and negativity of second term on right hand side, we get〈
b,t ,

(
b− bmin

(1+κ2ωmaxt)
1

κ2

)
−

〉
≤
⎛⎝−bω,

(
b− bmin

(1+κ2ωmaxt)
1

κ2

)
−

⎞⎠ .

The inequality can be rewritten in the following way:

1
2

d
dt
‖
(

b− 1

k (1+κ2ωmint)
1

κ2

)
−
‖2

2

≤
⎛⎝−bω +

ωmax

k (1+κ2ωmaxt)
1

κ2
+1

,

(
b− 1

k (1+κ2ωmint)
1

κ2

)
−

⎞⎠ .

≤ ωmax

1+κ2ωmaxt

⎛⎝−b+
1

k (1+κ2ωmaxt)
1

κ2

,

(
b− 1

k (1+κ2ωmint)
1

κ2

)
−

⎞⎠
≤ 0.

Using integration from 0 to t and using the fact that bn,k
0 ≥ 1

k , we conclude that b≥ 1

k(1+κ2ωmint)
1

κ2

almost everywhere in ΩT , and thus we prove (74).

8.4. REMAINING INEQUALITY

Now, we will establish (80). Let us test the equation (76) with ϕ
2
√

b
, where ϕ ∈ D(Ω) and

ϕ ≥ 0. Thus, we get

〈b,t , ϕ
2
√

b
〉−
(

bv,∇
ϕ

2
√

b

)
+

(
Tn(μn)∇b,∇

ϕ
2
√

b

)
=

(
−bω,

ϕ
2
√

b

)
+

(
Tk (μn) |D(v)|2
1+n−1|D(v)|2 ,

ϕ
2
√

b

)
.
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Using non-negativity of the last term of the right hand side and divv = 0, we get〈(√
b
)

t
,ϕ
〉
+

(
∇bv,

ϕ
2
√

b

)
+

(
Tn(μn)∇b,

∇ϕ
2
√

b

)
−
(

Tn(μn)∇b,
ϕ

4b
3
2

∇b
)

≥−1
2

(√
bω,ϕ

)
.

Let us observe that the last term of the left hand side is not positive. Thus, we get〈(√
b
)

t
,ϕ
〉
+
(

∇
(√

b
)

v,ϕ
)
+
(

Tn(μn)∇
√

b,∇ϕ
)
≥−1

2

(√
bω,ϕ

)
.

After integrating from 0 to t, we get(√
b(t),ϕ

)
−
∫ t

0

(√
bv,∇ϕ

)
dτ +

∫ t

0

(
Tn(μn)∇

√
b,∇ϕ

)
dτ

≥
(√

bn,k
0 ,ϕ

)
− 1

2

∫ t

0

(√
bω,ϕ

)
dτ.

9. PROOF OF THEOREM 7

Let (vn,bn,ωn) be a solution to the problem (75)-(78), whose existence is guaranteed
by Theorem 10. Our goal is to pass with n → ∞ in (75)-(78) to obtain (54)-(56), and thus
to prove Theorem 9.

9.1. N-INDEPENDENT ESTIMATES

Proceeding as before, we get

‖vn(t)‖2
2 +2

∫ t

0

∫
Ω

Tk(μn)|D(vn)|2dxdτ = ‖vn
0‖2

2. (139)

Thus, we deduce the following estimate:

sup
t∈(0,T )

‖vn(t)‖2
2 +

∫
ΩT

Tk(μn)|D(vn)|2dxdτ ≤C. (140)

Now, using bounds on ω (73) and b (74) and Korn inequality, we deduce∫ T

0
‖vn‖2

1,2 dxdτ ≤C(k). (141)
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Using the equation (75) and the inequality (141), one can deduce∫ T

0
‖∂tvn‖2

−1,2 dxdτ ≤C(k). (142)

Using standard interpolation inequality ‖u‖ 10
3
≤C‖u‖

2
5
2 ‖u‖

3
5
1,2 and (140), (141), we get

∫ T

0
‖vn‖

10
3
10
3

dτ ≤C(k). (143)

Now, we will focus on uniform estimates for bn. First, for arbitrary a > 0 we set z = Ta(bn)
in (76) and obtain

〈bn
,t ,Ta(bn)〉− (bnvn,∇Ta(bn))+(Tn(μn)∇bn,∇Ta(bn))

=

(
−bnωn +

Tk (μn) |Dvn|2
1+n−1|Dvn|2 ,Ta(bn)

)
.

Using the definition (30), we get

〈∂tbn,Ta(bn)〉= d
dt
‖Θa(bn)‖1 . (144)

From the inequality (140), we obtain∫ T

0

(
Tk (μn) |Dvn|2
1+n−1|Dvn|2 ,Ta(bn)

)
≤ aC. (145)

Using the fact that divvn = 0, we get

(bnvn,∇Ta(bn)) =−(∇bnvn,Ta(bn)) =−(vn,∇Θa(bn)) = (divvn,Θa(bn)) = 0.

We also have

(Tn(μn)∇bn,∇Ta(bn)) =
∫

Ω
Tn(μn) |∇Ta(bn)|2 dx. (146)

Combining (144), (145) and (146), we get

d
dt
‖Θa(bn)‖1 +

∫
Ω

Tn(μn) |∇Ta(bn)|2 dx≤Ca.

By integration of the above inequality from 0 to T , we get

sup
t∈(0,T )

‖Θa(bn(t))‖1 +
∫

ΩT
Tn(μn) |∇Ta(bn)|2 dxdτ ≤CaT +2‖Θa(bn(0))‖1 . (147)

Using (30) one can show that

if bn ≥ a then Θa(bn)≥ 1
2

abn
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and

if bn < a then Θa(bn) =
1
2
(bn)2.

Thus, we get

‖bn(t)‖1 ≤
∫

bn(t)≥a

2
a

Θa(bn(t))dx+
∫

bn(t)<a

√
2Θa(bn(t))dx

≤C(a)‖Θa(bn(t))‖1 +C(a).
(148)

Using (147), (148) and (60), the following inequality can be deduced:

sup
t∈(0,T )

‖bn(t)‖1 +
∫

ΩT
Tn(μn) |∇Ta(bn)|2 dxdτ ≤C(a). (149)

Now, we test the equation (76) using z = 1
(bn)λ (which is a viable test function based on (74)),

where λ ∈ (0,1):

d
dt

∫
Ω

(bn)1−λ

1−λ
dx−λ

∫
Ω

Tn(μn)
|∇bn|2
(bn)1+λ dx =

(
−bnωn +

Tk (μ) |D(v)|2
1+n−1|D(v)|2 ,

1

(bn)λ

)
.

Thus, integrating from 0 to t and taking supremum over t ∈ (0,T ), we obtain the following
inequality:

λ
∫

ΩT
Tn(μn)

|∇bn|2
(bn)1+λ dxdt ≤

∫ T

0

(
bnωn,

1

(bn)λ

)
dt +

1
1−λ

sup
t∈(0,T )

∫
Ω
(bn)1−λ dx.

Using (149) and (73), we can bound right hand side uniformly and finally obtain∫
ΩT

Tn(μn)

(bn)1+λ |∇bn|2dxdt ≤C(λ−1) ∀ λ ∈ (0,1). (150)

Now, we set z = 1
bn in (76), and using the fact that divvn = 0, we obtain

d
dt

∫
Ω

lnbn(t)dx−
∫

Ω

Tn(μn)

(bn)2 |∇bn|2dx =
(
−bnωn +

Tk (μn) |Dvn|2
1+n−1|Dvn|2 ,

1
bn

)
.

After integrating from 0 to t, we deduce

−
∫

bn<1
lnbn(t)dx+

∫ t

0

∫
Ω

Tn(μn)

(bn)2 |∇bn|2dxdt +
∫ t

0

(
Tk (μn) |Dvn|2
1+n−1|Dvn|2 ,

1
bn

)
dt

≤
∫ t

0
(ωn,1)+‖ lnbn,k

0 ‖1.

With the proper usage of supremum, we obtain

sup
t∈(0,T )

−
∫

bn<1
lnbn(t)dx+

∫ T

0

∫
Ω

Tn(μn)

(bn)2 |∇bn|2dxdt +
∫ T

0

(
Tk (μn) |Dvn|2
1+n−1|Dvn|2 ,

1
bn

)
dt

≤ 2
∫ T

0
(ωn,1)dt +2‖ lnbn,k

0 ‖1.
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Using the fact that

‖ lnbn(t)‖1 =−
∫

Ω∩{bn(t)<1}
lnbn(t)dx+

∫
Ω∩{bn(t)>1}

lnbn(t)dx,

we obtain

sup
t∈(0,T )

‖ lnbn(t)‖1 +
∫ T

0

∫
Ω

Tn(μn)

(bn)2 |∇bn|2dxdt +
∫ T

0

(
Tk (μn) |Dvn|2
1+n−1|Dvn|2 ,

1
bn

)
dt

≤ 2
∫ T

0
(ωn,1)dt + sup

t∈(0,T )
‖bn(t)‖1 +2‖ lnbn,k

0 ‖1.

Thus, by (73), (149) (taken with a = 1), (11), (60), (61), we get

sup
t∈(0,T )

‖ lnbn(t)‖1 +
∫ T

0

∫
Ω

Tn(μn)

(bn)2 |∇bn|2dxdt +
∫ T

0

(
Tk (μn) |D(v)|2
1+n−1|D(v)|2 ,

1
bn

)
dt ≤C. (151)

Combining (151) with (150), (61), (60), we get

sup
t∈(0,T )

‖ lnbn(t)‖1 +
∫ T

0

∫
Ω

Tn(μn)

(bn)1+λ |∇bn|2dxdt +
∫ T

0

∫
Ω

Tk (μn) |D(v)|2
bn (1+n−1|D(v)|2)dxdt

≤C(λ−1) ∀ λ ∈ (0,1].

(152)

We see that, based on (140), (29), for all k ∈ N

k
∫

ΩT∩{μn≥k}
|Dvn|2

1+n−1|Dvn|2 dxdt ≤C.

Additionally, based on (152) with some specific λ i.e. λ = 1
2 , (29), (73), (66), we have that

for all k ∈ N ∫
ΩT∩{μn≤k}

|Dvn|2
1+n−1|Dvn|2 dxdt ≤C.

Thus, we get ∫ T

0

∫
Ω

|Dvn|2
1+n−1|Dvn|2 dxdt ≤C, (153)

where C does not depend on k and n. Next, we will focus on estimates on Tn(μn) that are
uniform with respect to n and k . Using the definition (29), we get

Tn

(
bn

ωn

)
≤ Tn (μn)≤ Tn

(
bn

ωn

)
+

1
n

and thus

min
{

1,
1

ωn

}
Tn (bn)≤ Tn (μn)≤max

{
1,

1
ωn

}
Tn (bn)+

1
n
.
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Due to (73), we finally get

C1Tn (bn)≤ Tn (μn)≤C2Tn (bn)+
1
n
. (154)

Thus, by (152)∫ T

0
‖∇
[
(Tn(bn))1− λ

2

]
‖2

2dt =C(λ )
∫

ΩT

|∇Tn(bn)|2
(Tn(bn))λ dxdt

=C(λ )
∫

ΩT∩{bn≤n}
|∇Tn(bn)|2

(bn)λ dxdt =C(λ )
∫

ΩT∩{bn≤n}
Tn(bn)

(bn)1+λ |∇Tn(bn)|2 dxdt

≤C(λ )
∫

ΩT∩{bn≤n}
Tn(μn)

(bn)1+λ |∇Tn(bn)|2 dxdt ≤C(λ−1).

(155)

Combining (149) (i.e. with a = 1) with (155), we get

sup
t∈(0,T )

‖(Tn (bn))1−λ/2 ‖1 +
∫ T

0

∥∥∥∇
[
(Tn(bn))1− λ

2

]∥∥∥2

2
dt ≤C(λ−1). (156)

Using interpolation inequality ‖ f‖
8
3
8
3
≤C‖ f‖

2
3
1 ‖ f‖2

1,2 and inequality (156), we get

∫
ΩT

∥∥∥(Tn (μn))1−λ/2
∥∥∥ 8

3

8
3

≤C(λ−1),

and thus ∫
ΩT
‖Tn (μn)‖

8−4λ
3

8−4λ
3
≤C(λ−1) for all λ ∈ (0,1). (157)

Also, let us observe that (157) implies∫
ΩT

∥∥(Tn (μn))α∥∥q
q ≤C(q) for all q ∈

[
1,

8
3α

)
and α ∈ (0,1]. (158)

Now, we continue with k-dependent estimates that will be useful to obtain n→∞ limit. From
(152), maximum principle for ωn (73) and minimum principle for bn (74), we get∫

ΩT

|∇bn|2
(bn)1+λ dxdt ≤C(λ−1,k)

which combined with (149), yields∫ T

0

∥∥∥(bn)
1−λ

2

∥∥∥2

1,2
dxdt ≤C(λ−1,k).

Using the W 1,2 ⊂ L6 embedding, we get∫ T

0

∥∥∥(bn)1−λ
∥∥∥

3
dxdt ≤C(λ−1,k). (159)
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Finally, using the interpolation inequality∥∥∥(bn)1−λ
∥∥∥ 5

3

5
3

≤C‖(bn)1−λ ‖
2
3
1

∥∥∥(bn)1−λ
∥∥∥

3

and (149), (159), we conclude that∫ T

0
‖bn‖

5−λ
3

5−λ
3

dxdt ≤C(λ−1,k). (160)

Now, we proceed with k dependent estimates on the diffusion term. For any q ∈ (1, 5
4), due

to (160) and (152), we get

∫
ΩT

∣∣∣√Tn(μn)∇bn
∣∣∣q dxdt =

∫
ΩT

(
Tn(μn) |∇bn|2

(bn)1+λ

)q/2

(bn)
(1+λ )q

2 dxdt

≤
(∫

ΩT

Tn(μn) |∇bn|2
(bn)1+λ dxdt

)q/2(∫
ΩT

(bn)
(1+λ )q

2−q dxdt
) 2−q

2

≤C(λ−1,k),

where λ < 5
3

2−q
q − 1, which implies that (1+λ )q

2−q < 5
3 . Therefore, we have the following

estimate: ∫
ΩT

∣∣∣√Tn(μn)∇bn
∣∣∣ 5−λ

4
dxdt ≤C(λ−1,k). (161)

Thus, combining the above inequality with (66), (73), (74) and (160), we get∫
ΩT
‖bn‖

5−λ
4

1, 5−λ
4

dxdt ≤C(λ−1,k). (162)

Notice that from 79
80−λ > 79

80 = 4
5 +

3
16 , the Hölder inequality, (161) and (157), it follows that∫

ΩT
|Tn(μn)∇bn| 80−λ

79 dxdt ≤C(λ−1,k). (163)

Additionally, we can observe that due to (163), (154), (53),∫
ΩT

∣∣(Tn(μn))α ∇bn∣∣ 80−λ
79 dxdt ≤C(λ−1,k) for all α ∈ [0,1]. (164)

In order to obtain uniform bound on ∂tbn, it remains to estimate convective term bnvn. Let
us observe that

‖bnvn‖ 10−λ
9
≤ ‖vn‖ 10

3
‖bn‖ 10

3
10−λ
20+λ

, (165)

where 10
3

10−λ
20+λ ∈ (10/7,5/3), and thus 10

3
10−λ
20+λ < 5−λ ∗

3 for some λ ∗ ∈ (0,1). Thus, we can
conclude that based on (160), (143) and (165) we have

‖bnvn‖ 10−λ
9
≤C(k,λ−1). (166)
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Using the equation (76) tested with z∈W 1, 80−λ
1−λ (Ω), combined with inequalities (166), (163),

(73), (160), (140), we can conclude with the help of the following inclusion:
W 1, 80−λ

1−λ (Ω)⊂W 1,80(Ω)⊂C0, 77
80 (Ω) that

∫ T

0
‖∂tbn‖−1, 80−λ

79
≤C(k,λ−1). (167)

Finally, we derive k-independent estimates for ωn. We set testing function z = ωn in (77)
and obtain

1
2

d
dt
‖ωn‖2

2 +
∫

Ω
Tn(μn) |∇ωn|2 =−κ2

(
(ωn)2 ,ωn

)
.

Thus, integrating from 0 to T we get

∫
ΩT

Tn(μn) |∇ωn|2 dxdt ≤C, (168)

which, after using (73) and (74), implies that

∫ T

0
‖ωn‖2

1,2 dxdt ≤C(k). (169)

We see that due to the Hölder inequality,

‖Tn (μn)∇ωn‖ 16−λ
11
≤
∥∥∥√Tn (μn)∇ωn

∥∥∥
2

∥∥∥√Tn (μn)
∥∥∥

2 16−λ
6+λ

≤
∥∥∥√Tn (μn)∇ωn

∥∥∥
2
‖Tn (μn)‖2

16−λ
6+λ

.
(170)

We see that 16−λ
6+λ ∈ (15/7,8/3), and thus 16−λ

6+λ ≤ 8−λ ∗
3 for some λ ∗ ∈ (0,1). From this and

(168), (157) we obtain

‖Tn (μn)∇ωn‖ 16−λ
11
≤C(λ−1). (171)

Thus, having (171), (143), (73) and (77), we can conclude that

∫ T

0
‖∂tωn‖

16−λ
11

−1, 16−λ
11

dxdt ≤C(λ−1). (172)
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9.2. PASSING TO THE LIMIT WITH N

Having (140), (141), (142), (143), (162), (167), (169), (172), we can find a subsequence
(which we do not relabel) such that

vn ⇀∗ v weakly* in L∞ (0,T,L2
div
)∩L2

(
0,T,W 1,2

div (Ω)
)
, (173)

∂tvn ⇀ ∂tv weakly in L2
(

0,T,W−1,2
div (Ω)

)
, (174)

bn ⇀∗ b weakly* in Lq (0,T,W 1,q(Ω)
)∩L∞(0,T,L1(Ω)) for all q ∈ [1,5/4), (175)

∂tbn ⇀ ∂tb weakly inM(
0,T,W−1,q(Ω)

)
for all q ∈ [1,80/79), (176)

ωn ⇀∗ ω weakly* in L2 (0,T,W 1,2(Ω)
)∩L∞(0,T,L∞(Ω)), (177)

∂tωn ⇀ ∂tω weakly in Lq (0,T,W−1,q(Ω)
)

for all q ∈ [1,16/11). (178)

Now, using the Aubin-Lions lemma 7, we conclude that for α ∈ (0,1) we have

vn → v strongly in L2 (0,T,W α,2(Ω)∩L2
div(Ω)

)
, (179)

ωn → ω strongly in L2 (0,T,W α,2(Ω)
)
, (180)

bn → b strongly in Lq (0,T,W α,q(Ω)) for all q ∈
[

1,
5
4

)
. (181)

We can extract subsequences that converge almost everywhere

vn → v almost everywhere in ΩT , (182)

ωn → ω almost everywhere in ΩT , (183)

bn → b almost everywhere in ΩT . (184)

Moreover, from (160), (184), (143), (184) and Vitali lemma 4, we get

vn → v strongly in Lq (0,T,Lq(Ω)) for all q ∈ [1,10/3), (185)
bn → b strongly in Lq (0,T,Lq(Ω)) for all q ∈ [1,5/3). (186)

Now, we will identify the limit of (77) as n→ ∞. Notice that (171) implies

Tn(μn)∇ωn ⇀ μ∇ω in Lq(ΩT ) for all q ∈ [1,16/11). (187)

Thus, using (179), (180), (178), we get

〈ω,t ,z〉− (ωv,∇z)+
(

μ∇ω,∇z
)
=−κ2

(
ω2,z

) ∀z ∈W 1,∞(Ω) a.a. t ∈ (0,T ).

We need to show that μ∇ω = μ∇ω almost everywhere in ΩT . To do so we use Lemma 4 and
(157), (183), (184) to get

Tn(μn)→ μ in Lq(0,T,Lq(Ω)) for all q ∈ [1,8/3). (188)
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Then, from (188), (177) and Lemma 5, we conclude

Tn(μn)∇ωn ⇀ μ∇ω in Lq(0,T,Lq(Ω)) for all q ∈
[

1,
8
7

)
. (189)

Using (189), (187) and the uniqueness of a weak limit, we get μ∇ω = μ∇ω . Now, we will
focus on obtaining a weak limit in (76). From (158), (183), (184) and Vitali lemma 4, for all
α ∈ (0,1) we have

(Tn(μn))α → μα strongly in Lq(0,T,Lq(Ω)) for all q ∈
[

1,
8

3α

)
. (190)

From (164) and the fact that 81
80 < 80

79 , we get

(Tn(μn))α ∇bn ⇀ μα∇b weakly in L
81
80

(
0,T ;L

81
80 (Ω)

)
for all α ∈ [0,1]. (191)

Our goal is to identify this limit for all α ∈ [0,1]. We will proceed inductively. Define h= 1
81 ,

α0 = 0 and αi+1 = αi +h. Notice that (191) holds for α0 due to (175). Assume that it holds
for αi, that is

(Tn(μn))αi ∇bn ⇀ μαi∇b weakly in L
81
80

(
0,T ;L

81
80 (Ω)

)
. (192)

Using (192), (190) with α = h and q = 4·81
3 and lemma 5, we get

(Tn(μn))αi+1 ∇bn = (Tn(μn))h (Tn(μn))αi ∇bn

⇀ μhμαi∇b = μαi+1∇b weakly in L
324
323

(
0,T ;L

324
323 (Ω)

)
.

(193)

From (191), (193) and the uniqueness of the weak limit, we get

(Tn(μn))αi+1 ∇bn ⇀ μαi+1∇b weakly in L
81
80

(
0,T ;L

81
80 (Ω)

)
.

Thus, setting i = 81, we get

Tn(μn)∇bn ⇀ μ∇b weakly in L
81
80

(
0,T ;L

81
80 (Ω)

)
. (194)

From (163), we deduce that Tn(μn)∇bn ⇀ μ∇b weakly in Lq(0,T,Lq(Ω)) for all q∈ [1,80/79).
Thus, from the uniqueness of the weak limit and (194), we finally obtain

Tn(μn)∇b ⇀ μ∇b weakly in Lq(0,T,Lq(Ω)) for all q ∈ [1,80/79). (195)

From (183), (184), (29) and lemma 4, we can conclude that for all α ∈ (0,1)

(Tk(μn))α ⇀ (Tk(μ))α strongly in Lq(0,T,Lq(Ω)) for all q ∈ [1,∞). (196)
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From (140), (173), (196) with α = 1
2 , Lemma 5 and the uniqueness of the weak limit,

we have √
Tk(μn)Dvn ⇀

√
Tk(μ)Dv weakly in L2 (0,T ;L2(Ω)

)
. (197)

Now, using (197), (196) with α = 1
2 , (174), (143), (179), we can pass to the limit in (75)

to get

〈v,t ,w〉−
(

Gk

(
|v|2
)

v⊗ v,∇w
)
+(Tk (μ)D(v),D(w)) = 0

∀w ∈W 1,2
div (Ω) a.a. t ∈ (0,T ).

(198)

The solution is defined on time interval [0,T ), however by repeating all previous steps it can
also be attained on time interval [0,T +ε). We will consider such extended solution to obtain
stronger convergence results

〈v,t ,w〉−
(

Gk

(
|v|2
)

v⊗ v,∇w
)
+(Tk (μ)D(v),D(w)) = 0

∀w ∈W 1,2
div (Ω) a.a. t ∈ (0,T + ε).

(199)

First, notice that based on (179) and lemma 8 we have

vn(t)→ v(t) in L2(Ω) for almost all t ∈ (0,T + ε). (200)

Let us pick time t∗ ∈ (T,T + ε) such that (200) convergence holds. Now, let us set w = v
(which is a viable test function) in (199) and integrate from 0 to t∗

‖v(t∗)‖2
2 +2

∫
Ωt∗

Tk(μ)|D(v)|2dxdt = ‖v0‖2
2.

By setting t = t∗ in (139) (having in mind that it is valid for extended solution) and passing
with n→ ∞, we get

limsup
n→∞

(
‖vn(t∗)‖2

2 +2
∫

Ωt∗
Tk(μn)|Dvn|2dxdt

)
= ‖v0‖2

2.

By using (200), we get

‖v(t∗)‖2
2 +2limsup

n→∞

∫
Ωt∗

Tk(μn)|Dvn|2dxdt = ‖v0‖2
2. (201)

By subtraction, we get

limsup
n→∞

∫
Ωt∗

Tk(μn)|Dvn|dxdt =
∫

Ωt∗
Tk(μ)|D(v)|2dxdt. (202)

Thus, using (202) and (197) (again, having in mind that it can be attained up to time T + ε),
we conclude that √

Tk(μn)Dvn →
√

Tk(μ)Dv strongly in L2 (0, t∗;L2(Ω)
)
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and thus, due to the fact that t∗ ∈ (T,T + ε),

Tk(μn)|Dvn|2 → Tk(μ)|Dv|2 strongly in L1 (0,T ;L1(Ω)
)
. (203)

Having this, we can extract subsequence that converges almost everywhere

Tk(μn)|Dvn|2 → Tk(μ)|Dv|2 almost everywhere in ΩT . (204)

From (153), we have ∫ T

0

∫
Ω

Tk(μn)|Dvn|2
Tk(μn)+n−1Tk(μn)|Dvn|2 dxdt ≤C.

Using (204), (183), (184) and Fatou lemma, we get∫
ΩT

Tk(μ)|Dv|2
Tk(μ)

dxdt =
∫

ΩT
|Dv|2dxdt ≤C.

Now, we can strengthen (176). We see that, based on (76) and (203), (185), (186), (177),
(195), we have∫ T

0
〈∂tbn,z〉dt =

∫ T

0
(bnvn,∇z)dt−

∫ T

0
(Tn(μn)∇bn,∇z)dt−

∫ T

0
(bnωn,z)dt

+
∫ T

0

(
Tk (μn) |Dvn|2
1+n−1|Dvn|2 ,z

)
dt

→
∫ T

0
(bv,∇z)dt−

∫ T

0
(μ∇b,∇z)dt−

∫ T

0
(bω,z)dt

+
∫ T

0

(
Tk (μ) |Dv|2,z)dt

for all z ∈ L∞ (0,T,W 1,q(Ω)
)
, where q ∈ (80,∞]. This means that

∂tbn ⇀ ∂tb weakly in L1 (0,T,W−1,q(Ω)
)

for all q ∈ [1,80/79).

Using lemma 4 and (74), (73), (183), (184), we can deduce that

1√
Tn (μn)(bn)

1+λ
2
→ 1
√μb

1+λ
2

strongly in Lp(ΩT ) for all 1≤ p < ∞ and for all 1≤ λ < ∞.

(205)

Combining (205), (195), we deduce that√
T n (μn)

(bn)
1+λ

2
∇bn ⇀

√μ

(b)
1+λ

2
∇b weakly in Lq(ΩT ) for all q ∈

[
1,

80
79

)
.

Next, using (152), we can improve convergence result to√
T n (μn)

(bn)
1+λ

2
∇bn ⇀

√μ

(b)
1+λ

2
∇b weakly in L2(ΩT ).
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Employing the same reasoning, one can show that

T n (μn)

(bn)
1
2

∇bn ⇀
μ
b

1
2

∇b weakly in Lq(ΩT ) for all q ∈
[

1,
80
79

)
.

Finally, thanks to (160), (184) and Lemma 4, we get

√
bn →

√
b strongly in Lq (0,T,Lq(Ω)) for all q ∈ [1,10/3).

Thus, based on lemma 8, we see, that there exists a subsequence (which we do not relabel)
such that√

bn(t)→
√

b(t) strongly in Lq(Ω) for all q ∈ [1,10/3) and almost all times t ∈ (0,T ).

This gives us(√
bn(t),z

)
→
(√

b(t),z
)

for all ϕ ∈ D(Ω) for almost all times t ∈ (0,T ).

Obtained convergence results are sufficient to pass to the limit with n → ∞ in equations
(75)-(77) and the inequality (80) to get Theorem 9.

10. PROOF OF MAIN THEOREM

For an arbitrary k, we denote by (vk,ωk,bk) a solution to the problem (54)-(56), whose
existence was established in Theorem 9.

10.1. K-INDEPENDENT ESTIMATES

First, from (54) tested with vk and (58), we get

sup
t∈(0,T )

‖vk(t)‖2
2 +

∫
ΩT

(
1+Tk(μk)

)
|D(vk)|2dxdt ≤C. (206)

Thus, using Korn inequality and interpolation inequality ‖ f‖
10
3

10
3
≤ ‖ f‖

4
3
2 ‖ f‖2

1,2, we get

∫ T

0

∥∥∥vk
∥∥∥2

1,2
+
∥∥∥vk
∥∥∥ 10

3

10
3

dt ≤C. (207)
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Moreover, from (58) we have ∫ T

0

∥∥∥Tk(μk)
∥∥∥ 8−5λ

3

8−5λ
3

dt ≤C(λ−1). (208)

Using (208), (206) and Hölder inequality, we get∥∥∥Tk(μk)Dvk
∥∥∥

ΩT , 16−5λ
11

≤
∥∥∥∥√Tk(μk)Dvk

∥∥∥∥
ΩT ,2

∥∥∥∥√Tk(μk)

∥∥∥∥
ΩT ,2 16−5λ

6+5λ

≤
∥∥∥∥√Tk(μk)Dvk

∥∥∥∥
ΩT ,2

∥∥∥Tk(μk)
∥∥∥2

ΩT , 16−5λ
6+5λ

≤C(λ−1),

(209)

due to 16−5λ
6+5λ ∈ (1,8/3). Notice that from (58) and (52), it follows that∫

ΩT
|bk| 8−5λ

3 ≤C(λ−1). (210)

Using (58), (210), (52) and the Hölder inequality, we get

‖∇b‖2−λ ≤
∥∥∥∥∥∥
√√√√ μk(

bk
)1+λ ∇bk

∥∥∥∥∥∥
2

∥∥∥∥∥∥
√(

bk
)1+λ

μk

∥∥∥∥∥∥ 2(2−λ )
λ

≤C

∥∥∥∥∥∥
√√√√ μk(

bk
)1+λ ∇bk

∥∥∥∥∥∥
2

∥∥∥bk
∥∥∥ λ

2

2−λ
≤C(λ−1).

(211)

Notice that for any λ ∈ (0,1) we can find λ1,λ2 ∈ (0,1) such that 7
8−λ = 1

2−λ1
+ 3

8−5λ2
.

Additionally, λ1,λ2 → 0+ as λ → 0+. Thus, by the Hölder inequality and (52), (211), (210),
we get∥∥∥μk∇bk

∥∥∥
ΩT , 8−λ

7

≤
∥∥∥∇bk

∥∥∥
ΩT ,2−λ1

∥∥∥μk
∥∥∥

ΩT ,
8−5λ2

3

≤C
(
λ−1

1 ,λ−1
2
)≤C(λ−1). (212)

From (58), (211), (210) and (212) we have

sup
t∈(0,T )

(
‖bk(t)‖1 +‖ lnbk(t)‖1

)
+
∫ T

0

(∥∥∥∇bk
∥∥∥2−λ

2−λ
+
∥∥∥bk
∥∥∥ 8−5λ

3

8−5λ
3

)
dt

+
∫ T

0

∥∥∥μk∇bk
∥∥∥ 8−λ

7

8−λ
7

dt ≤C(λ−1).

(213)

Based on equation (55), we have∥∥∥∂tbk
∥∥∥−1, 8−λ

7

= sup

ϕ∈W 1,( 8−λ
7 )

′
(Ω):‖ϕ‖

W
1,( 8−λ

7 )
′
(Ω)

=1

∣∣∣〈∂tbk,ϕ
〉∣∣∣

≤ sup
ϕ∈W

1, 8−λ
1−λ (Ω)

‖ϕ‖
1, 8−λ

1−λ
=1

[∣∣∣(bkvk,∇ϕ
)∣∣∣+ ∣∣∣(μkbk,∇ϕ

)∣∣∣+ ∣∣∣(ωkbk,ϕ
)∣∣∣+ ∣∣∣(Tk(μk)|Dvk|2,ϕ

)∣∣∣]
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Let us note that W 1, 8−λ
1−λ (Ω)⊂W 1,8(Ω)⊂C0, 5

8 (Ω), and thus, by Hölder and Young inequali-
ties, we have∥∥∥∂tbk

∥∥∥−1, 8−λ
7

≤ sup
ϕ∈W

1, 8−λ
1−λ (Ω)

‖ϕ‖
1, 8−λ

1−λ
=1

[∥∥∥vk
∥∥∥ 10

3

∥∥∥bk
∥∥∥ 40

23

‖∇ϕ‖8 +
∥∥∥μk∇bk

∥∥∥ 8−λ
7

‖∇ϕ‖ 8−λ
1−λ

+
∥∥∥ωk

∥∥∥
∞

∥∥∥bk
∥∥∥

1
‖ϕ‖∞ +

∥∥∥Tk(μk)|Dvk|2
∥∥∥

1
‖ϕ‖∞

]

≤C

(∥∥∥vk
∥∥∥ 10

3

10
3

+
∥∥∥bk
∥∥∥ 40

23

40
23

+
∥∥∥μk∇bk

∥∥∥ 8−λ
7

8−λ
7

+
∥∥∥bk
∥∥∥

1
+
∥∥∥Tk(μk)|Dvk|2

∥∥∥
1
+1

)
.

Finally, by (213), (210), (207), (206), we get∫ T

0

∥∥∥∂tbk
∥∥∥

W−1, 8−λ
7 (Ω)

dt ≤C(λ−1). (214)

Next, notice, that (56), tested with ωk, and (52) imply

sup
t∈(0,T )

∥∥∥ωk(t)
∥∥∥

∞
+
∫

ΩT
bk|∇ωk|2dxdt ≤C. (215)

Using the Hölder inequality and (215), (210), we get∥∥∥bk∇ωk
∥∥∥ 16−5λ

11

≤
∥∥∥√bk∇ωk

∥∥∥
2

∥∥∥√bk
∥∥∥

2 16−5λ
6+5λ

≤
∥∥∥√bk∇ωk

∥∥∥
2

∥∥∥bk
∥∥∥2

16−5λ
6+5λ

≤C(λ−1).
(216)

Using (213), (52) and (216), we get∥∥∥∇(bkωk)
∥∥∥ 16−5λ

11

≤C(λ−1) (217)

and ∥∥∥∥∇
(

bkωk

bk +1

)∥∥∥∥ 16−5λ
11

≤C(λ−1). (218)

Also, with the help of (218), (210), (52), we can write∫ T

0

∥∥∥bkωk
∥∥∥ 16−5λ

11

W 1, 16−5λ
11 (Ω)

dt ≤C(λ−1). (219)

Using the equation (56) and inequalities (52), (207), (216), we deduce (in a similar way
as in (214)) the following: ∫ T

0

∥∥∥∂tωk
∥∥∥ 16−5λ

11

W−1, 16−5λ
11 (Ω)

dt ≤C(λ−1). (220)
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10.2. RECONSTRUCTION OF PRESSURE

We will show that there exists pressure pk ∈ L2(0,T,L2(Ω)) such that

〈vk
,t ,w〉−

(
Gk

(∣∣∣vk
∣∣∣2)vk⊗ vk,∇w

)
+
(

Tk

(
μk
)

D(vk),D(w)
)
=
(

pk,divw
)

∀w ∈W 1,2(Ω) and almost all t ∈ (0,T ).
(221)

Combining Lemma 2 with (47) and (29), (31) we get

pk
1 = L(Tk(μk)Dvk) ∈ L2(Ω) for almost all t ∈ (0,T ), (222)

pk
2 = L(−Gk(|vk|2)vk⊗ vk) ∈ L2(ΩT ) for almost all t ∈ (0,T ), (223)

which are uniquely defined for a fixed k. Additionally, using the estimates (207), (209),
we have ∥∥∥pk

1

∥∥∥ 16−5λ
11

≤C
∥∥∥Tk(μk)Dvk

∥∥∥ 16−5λ
11

for almost all t ∈ (0,T ), (224)∥∥∥pk
2

∥∥∥ 5
3

≤C
∥∥∥vk
∥∥∥2

10
3

for almost all t ∈ (0,T ), (225)

Moreover, the following equalities hold:(
pk

1,Δφ
)
=
(

Tk(μk)D(vk),∇(∇φ)
)

for all φ ∈W 2,2(Ω), (226)(
pk

2,Δφ
)
=−

(
Gk

(∣∣∣vk
∣∣∣2)vk⊗ vk,∇2φ

)
for all φ ∈W 2,2(Ω), (227)∫

Ω
pk

1dx =
∫

Ω
pk

2dx = 0. (228)

Let w ∈W 1,2(Ω). It can be decomposed (using Helmholtz decomposition) in the following
way:

w = ∇ϕ +∇×A,

where ϕ,A ∈W 2,2(Ω). Since div(∇×A) = 0, from (54) we have

〈vk
,t ,∇×A〉−

(
Gk

(∣∣∣vk
∣∣∣2)vk⊗ vk,∇(∇×A)

)
+
(

Tk

(
μk
)

D(vk),D(∇×A)
)
= 0. (229)

We also see that due to divvk = 0, we have

〈vk
,t ,∇ϕ〉= 0. (230)

Since div(∇×A) = 0, we can write(
pk

1,div(∇×A)
)
= 0,

(
pk

2,div(∇×A)
)
= 0. (231)
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Thus, summing (231), (230), (229), (227), (226), and using the fact that(
Tk(μk)D(vk),∇(∇φ)

)
=
(

Tk(μk)D(vk),D(∇φ)
)
,

we get

〈vk
,t ,∇φ +∇×A〉−

(
Gk

(∣∣∣vk
∣∣∣2)vk⊗ vk,∇(∇φ +∇×A)

)
+
(

Tk

(
μk
)

D(vk),D(∇φ +∇×A))
)
=
(

pk,div(∇φ +∇×A)
)
,

where pk = pk
1 + pk

2. The obtained equality is exactly (221).
Next, using (224), (225) and estimates (207), (209), we deduce∫ T

0

(∥∥∥pk
1

∥∥∥ 16−5λ
11

16−λ
11

+
∥∥∥pk

2

∥∥∥ 5
3

5
3

)
dt ≤C(λ−1). (232)

Now, based on the equation (221) for λ ∈ (0,1) and proceeding as in (214), we have∥∥∥∂vk
t

∥∥∥
W−1, 16−5λ

11 (Ω)
≤C

(∥∥∥vk
∥∥∥2

10
3

+
∥∥∥Tk(μk)Dvk

∥∥∥ 16−5λ
11

+‖p1‖ 16−5λ
11

+‖p2‖ 5
3

)
. (233)

Consequently by estimates (206), (207), (232), we have∫ T

0

∥∥∥∂tvk
∥∥∥ 16−5λ

11

W−1, 16−5λ
11 (Ω)

dt ≤C(λ−1). (234)

10.3. TAKING THE LIMIT K → ∞

Based on (206), (207), (234), (213), (214), (215), (220), (210), (232), we can deduce the
existence of a subsequence (which we do not relabel) such that

vk ⇀∗ v weakly* in L∞ (0,T,L2
div(Ω)

)∩L2
(

0,T,W 1,2
div (Ω)

)
, (235)

vk ⇀ v weakly in L
10
3

(
0,T,L

10
3 (Ω)

)
, (236)

∂tvk ⇀ ∂tv weakly in Lq (0,T,W−1,q(Ω)
)

for all q ∈
[

1,
16
11

)
, (237)

bk ⇀∗ b weakly* in Lq (0,T,W 1,q(Ω)
)∩L∞ (0,T,L1(Ω)

)
for all q ∈ [1,2), (238)

∂tbk ⇀ ∂tb weakly inM(
0,T,W−1,q(Ω)

)
for all q ∈ [1,8/7), (239)

ωk ⇀∗ ω weakly* in L∞ (0,T,L∞(Ω)) , (240)

∂tωk ⇀ ∂tω weakly in Lq (0,T,W−1,q(Ω)
)

for all q ∈ [1,16/11), (241)

bk ⇀ b weakly in Lq (0,T,Lq(Ω)) for all q ∈ [1,8/3), (242)

pk
1 ⇀ p1 weakly in Lq (0,T,Lq(Ω)) for all q ∈ [1,16/11), (243)

pk
2 ⇀ p2 weakly in L

5
3

(
0,T,L

5
3 (Ω)

)
. (244)

117



Przemysław Kosewski

From Aubin-Lions lemma, we conclude that for α ∈ (0,1)

vn → v strongly in L2 (0,T,W α,2(Ω)∩L2
div(Ω)

)
, (245)

bn → b strongly in L2 (0,T,W α,2(Ω)
)
. (246)

We can extract subsequences that converge almost everywhere

vk → v almost everywhere in ΩT , (247)

bk → b almost everywhere in ΩT . (248)

Thus, based on inequalities (213), (207) and Vitali lemma 4, we have

vk → v strongly in Lq (0,T,Lq(Ω)) for all q ∈ [1,10/3), (249)

bk → b strongly in Lq (0,T,Lq(Ω)) for all q ∈ [1,8/3). (250)

Using (219), (218), (250), (240), lemma 5 and the uniqueness of the weak limit, we get

bkωk ⇀ bω weakly in Lq (0,T,W 1,q(Ω)
)

for all q ∈ [1,16/11), (251)

bkωk

1+bk ⇀
bω

1+b
weakly in Lq (0,T,W 1,q(Ω)

)
for all q ∈ [1,16/11). (252)

Our goal is to strengthen convergence result for ωk. To achieve this, we employ Div-Curl
lemma (see lemma 3). Let us define two 4-vectors

ak :=
(

ωk,ωkvk−μk∇ωk
)
, ck :=

(
bk
(

1+bk
)−1

ωk,0,0,0
)
.

Using (52), (207) and (216), we get∥∥∥ak
∥∥∥

L
16−5λ

11 (ΩT )
+
∥∥∥ck
∥∥∥

L∞(ΩT )
≤C(λ−1).

From the equation (56), the maximum principle (52) and (218), we have∥∥∥divt,x ak
∥∥∥

L∞(ΩT )
=
∥∥∥∂tωk +div

(
ωkvk

)
−div

(
μk∇ωk

)∥∥∥
L∞(ΩT )

= κ2

∥∥∥∥(ωk
)2
∥∥∥∥

L∞(ΩT )

≤C

and ∥∥∥∥∇t,xck−
(

∇t,xck
)T
∥∥∥∥

L1(ΩT )

≤C
∥∥∥∥∇
(

bkωk

1+bk

)∥∥∥∥
L1(ΩT )

≤C.

Using (240), (249), (216), (52) in case of convergence of ak and (252), (52) combined with
the uniqueness of the weak limit in case of convergence of ck, we get

ak ⇀ a =
(

ω,ωv−μ∇ω
)

weakly in Lq(ΩT ) for all q ∈ [1,16/11),

ck ⇀∗ c =
(

b(1+b)−1 ω,0,0,0
)

weakly* in L∞(ΩT ) .
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Thus, using Div-Curl lemma 3, we get

bk|ωk|2
1+bk ⇀

b|ω|2
1+b

in the sense of distributions. (253)

However, we see that the sequence bk|ωk|2
1+bk is bounded in L∞(ΩT ), so a weak sequence can

be extracted. Using the uniqueness of the weak limit, we get

bk|ωk|2
1+bk ⇀∗ b|ω|2

1+b
weakly* in L∞(ΩT ). (254)

Using (254) and (250), we can deduce that∫
ΩT

(
bkωk

)2
dx =

∫
ΩT

bk
(

bk +1
)bk|ωk|2

1+bk dx

→
∫

ΩT
b(b+1)

b|ω|2
1+b

dx =
∫

ΩT
(bω)2 dx.

(255)

From (250) and (240), we get

bkωk ⇀ bω weakly in L2(ΩT ). (256)

And using (255) and (256), we get

bkωk → bω strongly in L2(ΩT ). (257)

Consequently, for a subsequence we have

bkωk → bω almost everywhere in ΩT . (258)

Using Vitali lemma 4, (258), (248) and (52), we get

ωk =
bkωk

bk → bω
b

= ω strongly in Lq(ΩT ) for all q ∈ [1,∞). (259)

Having the above convergence and (52), it is easy to see that

1
ωk →

1
ω

strongly in Lq(ΩT ) for all q ∈ [1,∞). (260)

Using (260) and (250), we conclude that

μk → μ =
b
ω

strongly in Lq(ΩT ) for all q ∈ [1,8/3). (261)

Also, there exists a subsequence (which we do not relabel) such that

μk → μ almost everywhere in ΩT . (262)
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From (261) combined with (238), we deduce

μk∇bk ⇀ μ∇b weakly in Lq(ΩT ) for all q ∈ [1,8/7). (263)

Thanks to (206), we can deduce that
√

Tk(μk)D(vk)⇀
√μD(v) in L2(ΩT ), and thus, by (235),

(261) and the uniqueness of the weak limit, we have√
Tk(μk)D(vk)⇀

√
μD(v) weakly in L2(ΩT ). (264)

Again, using (262), (213), (52) and lemma 4, we conclude that√
Tk
(
μk
)→√

μ strongly in Lq(ΩT ) for all q ∈ [1,16/3). (265)

Now, from (265), (264) and weak-strong convergence lemma 5, we can deduce

Tk

(
μk
)

Dvk ⇀ μDv weakly in Lq(ΩT ) for all q ∈ [1,16/11). (266)

Using (260), (251) and (238), we get

μk∇bk =
∇
(
bkωk)
ωk −∇bk ⇀

∇(bω)

ω
−∇b weakly in Lq(ΩT ) for all q ∈ [1,16/11).

The convergence results obtained above are sufficient to pass to the limit in (54)-(56) to get
(24), (26), (28). Now, we will focus on obtaining (25). Let us denote by Ek := |vk|2/2+bk.
Let us set w = vkz, z ∈W 1,∞(Ω) in (221) and sum it with (55) to get〈

Ek
t ,z
〉
−
((

Ek + pk
)

vk,∇z
)
+
(

μk∇bk,∇z
)
+
(

TK

(
μk
)

D
(

vk
)

vk,∇z
)

=
(
−bkωk,z

)
+

1
2

((
2Gk

(
|vk|2

)
|vk|2−|vk|2−Γk

(
|vk|2

))
vk,∇z

)
.

(267)

First, let us observe that by (207), (31), (32), the sequence
(
2Gk

(|vk|2) |vk|2−|vk|2−Γk
(|vk|2))vk

is bounded in L
10
9 (ΩT ), and thus there exists a weakly convergent subsequence (which we

do not relabel):(
2Gk

(
|vk|2

)
|vk|2−|vk|2−Γk

(
|vk|2

))
vk ⇀ 0 weakly in L

10
9 (ΩT ) . (268)

Using (247), (31), (32), we obtain(
2Gk

(
|vk|2

)
|vk|2−|vk|2−Γk

(
|vk|2

))
vk → 0 almost everywhere in ΩT . (269)

Thus, by (269), (268) and the Egorov theorem, we conclude that(
2Gk

(
|vk|2

)
|vk|2−|vk|2−Γk

(
|vk|2

))
vk ⇀ 0 weakly in L

10
9 (ΩT ) . (270)

From (247) and (248), we have

Ek → E almost everywhere in ΩT . (271)
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From (207), (213) and (271) combined with the Egorov theorem, we have

Ek ⇀ E = E weakly in L
5
3 (ΩT ). (272)

Now, we see that due to (207) and (272), vkEk is bounded in L
10
9 (ΩT ), and thus has a weakly

convergent subsequence. This, Egorov lemma, (271) and (247) imply that

vkEk ⇀ vE weakly in L
10
9 (ΩT ) . (273)

Finally, using (266), (249), (243), (244) and weak-strong convergence lemma 5, we get

Tk(μk)D(vk)vk ⇀ μD(v)v weakly in Lq(ΩT ) for all q ∈
[

1,
80
79

)
, (274)

pk
1vk ⇀ p1v weakly in Lq(ΩT ) for all q ∈

[
1,

80
79

)
, (275)

pk
2vk ⇀ p2v weakly in Lq(ΩT ) for all q ∈

[
1,

10
9

)
. (276)

From the equation (267) and (270), (273)-(276), (263), (257), recalling that weakly conver-
gent sequence is bounded, we deduce that∫ T

0

∥∥∥∂tEk
∥∥∥q

W−1,q(Ω)
dt ≤C for all q ∈ [1,80/79).

Thus, one can pass to the limit in (267) to get (25).

10.4. ATTAINMENT OF INITIAL DATA

In this part, we focus on obtaining initial conditions in a similar fashion as presented in
[4]. We start with v. Let us test equation (54) with ϕ ∈D(Ω) such that divϕ = 0 and integrate
from 0 to t(

vk(t),ϕ
)
− (v0,ϕ)−

∫ t

0

(
vk⊗ vk,Dϕ

)
dt +

∫ t

0

(
Tk(μk)Dvk,Dϕ

)
dx = 0. (277)

Using (249) and lemma 8, we obtain

vk(t)→ v(t) in L2(Ω) for almost all t ∈ (0,T ). (278)

Using (266), (249) and (278), we can pass to the limit in (277)

(v(t),ϕ)− (v0,ϕ)−
∫ t

0
(v⊗ v,Dϕ)dt +

∫ t

0
(μDv,Dϕ)dt = 0 for almost all t ∈ (0,T ).
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From this, we deduce

lim
t→0+

(v(t),ϕ) = (v0,ϕ) . (279)

The equality also holds for ϕ ∈ L2
div(Ω). Indeed, let {ϕ j} be a sequence of smooth functions

such that ϕ j → ϕ in L2(Ω). First, let us observe that by (235) we have

lim
j→∞

lim
t→0+

|(v(t),ϕ j−ϕ
) | ≤ sup

t∈(0,T )
‖v(t)‖2 lim

j→∞
‖ϕ j−ϕ‖2 = 0. (280)

Now, using (279) we have

lim
j→∞

lim
t→0+

(
v(t),ϕ j

)
= lim

j→∞
lim

t→0+
(v(t),ϕ)+ lim

j→∞
lim

t→0+

(
v(t),ϕ j−ϕ

)
= (v0,ϕ) .

From this and (280) we deduce that (279) also holds for ϕ in L2
div(Ω).

Now, testing equation (54) with vk and integrating from 0 to t, we get

‖vk(t)‖2
2 +2

∫ t

0

(
Tk(μk)Dvk,Dvk

)
dt = ‖v0‖2

2.

Next, omitting second term of the left hand side and passing to the limit with k→∞ with the
use of (278), we get

‖v(t)‖2
2 ≤ ‖v0‖2

2 for a.a. t ∈ (0,T ). (281)

Using (279) and (281), we conclude that

lim
t→0+

‖v(t)− v0‖2
2 = lim

t→0+

(‖v(t)‖2
2 +‖v0‖2

2−2(v(t),v0)
)

≤ ‖v0‖2
2 +‖v0‖2

2−2(v0,v0) = 0.
(282)

Similarly, we can show attainment of initial data for ω .
Now, we will concentrate on showing attainment of initial data by b. Before we proceed
further, we will establish more convergence results. By (262), (213), (52) and lemma 4,
we have √

μk →√
μ =

√
b
ω

strongly in Lq(ΩT ) for all q ∈ [1,16/3). (283)

From (283) combined with (238), we deduce√
μk∇bk ⇀

√
μ∇b weakly in Lq(ΩT ) for all q ∈ [1,16/11). (284)

From (238), (248), Lemma 4, we conclude that√
bk →

√
b strongly in Lq (0,T,Lq(Ω)) for all q ∈ [1,4), (285)

Using (285) and lemma 8, we get√
bk(t)→

√
b(t) in L2(Ω) for almost all t ∈ (0,T ). (286)
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Now, using (59) for almost all times t ∈ (0,T ), we have(√
bk(t),ϕ

)
−
∫ t

0

(√
bkvk,∇ϕ

)
dτ +

∫ t

0

(√
ωk

2

√
μk∇bk,∇ϕ

)
dτ

≥ 1
2

∫ t

0

(√
bkωk,ϕ

)
dτ +

(√
bk

0,ϕ
)

∀ϕ ∈ D(Ω),ϕ ≥ 0.

Using (285), (284), (249), (238), (261), (286) and letting k→ ∞, we get(√
b(t),ϕ

)
−
∫ t

0

(√
bv,∇ϕ

)
dτ +

∫ t

0

(√
ω

2
√

μ∇b,∇ϕ
)

dτ

≥ 1
2

∫ t

0

(√
bω,ϕ

)
dτ +

(√
b0,ϕ

)
∀ϕ ∈ D(Ω),ϕ ≥ 0 for almost all t ∈ (0,T ).

Finally, letting t → 0+, we get

liminf
t→0+

(√
b(t),ϕ

)
≥
(√

b0,ϕ
)

∀ϕ ∈ D(Ω),ϕ ≥ 0. (287)

Note that the obtained inequality is also valid for ϕ ∈ L2(Ω), as before in (279), due to density
argument. Now, setting z = I{0≤τ≤t} in (267) and integrating from 0 to t, we get∫ t

0
〈∂tEk,1〉dτ =−

∫ t

0

(
bkωk,1

)
dτ.

Thus,∫
Ω

bk(x, t)dx+
∫

Ω
|vk(x, t)|2dx =−

∫ t

0

(
bkωk,1

)
dτ +

∫
Ω

bk
0(x)dx+

∫
Ω
|v0(x)|2dx.

Using (286), (278), (257) and letting letting k→ ∞, we obtain∫
Ω

b(x, t)dx+
∫

Ω
|v(x, t)|2dx =−

∫ t

0
(bω,1)dτ +

∫
Ω

b0(x)dx+
∫

Ω
|v0(x)|2dx

for almost all t ∈ (0,T ). Finally, letting t → 0+, we get

limsup
t→0+

(∫
Ω

b(x, t)dx+
∫

Ω
|v(x, t)|2dx

)
=
∫

Ω
b0(x)dx+

∫
Ω
|v0(x)|2dx.

Thus, employing (282), we get

limsup
t→0+

∫
Ω

b(x, t)dx =
∫

Ω
b0(x)dx. (288)

Notice that by (288) and (287) we get

limsup
t→0+

‖
√

b(t)−
√

b0‖2
2 = limsup

t→0+

(
‖b(t)‖1 +‖b0‖1−2

(√
b(t),

√
b0

))
≤ ‖b0‖1 +‖b0‖1 +2limsup

t→0+

(
−
(√

b(t),
√

b0

))
≤ 2‖b0‖1−2liminf

t→0+

(√
b(t),

√
b0

)
≤ 2‖b0‖1−2

(√
b0,
√

b0

)
≤ 0.
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Now, with the help of (238) it is straightforward to show attainment of initial data

lim
t→0+

‖b(t)−b0‖1 ≤ lim
t→0+

‖
√

b(t)−
√

b0‖2‖
√

b(t)+
√

b0‖2

≤ 2 sup
τ∈(0,T )

‖b(τ)‖1/2
1 lim

t→0+
‖
√

b(t)−
√

b0‖2

= 0.

This concludes the proof of the main theorem.
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1. INTRODUCTION

Let (X ,d) be a metric space. On the family B(X) of nonempty, closed, bounded subsets
of X , we define the map dH : B(X)×B(X)→ [0,∞] by the formula:

∀A,B ∈B(X) dH(A,B) := inf
{

r ≥ 0: A⊆ H(B,r) and B⊆ H(A,r)
}
,

the so-called Hausdorff metric on B(X), where H(A,r) denotes the r−hull of A. We shall
restrict this metric to the family C(X) of all nonempty compact subsets of X .

It is well-known that given an isometry i of (X ,d), the function I defined by the formula:

∀K ∈ C(X) I(K) := i[K] =
{

i(k) : k ∈ K
}

is an isometry of the space (C(X),dH). The following question is much more interesting:
what does one need to assume about the space (X ,d), so that all isometries of (C(X),dH)
can be obtained by the above formula from isometries of (X ,d).

The main purpose of this paper is to answer this question for certain uniquely geodesic
metric spaces by proving the following theorem:

Theorem 1. Let (X ,d) be a uniquely geodesic, geodesically complete metric space, in which
geodesics do not split. Let I be an isometry of (C(X),dH). Then there exists an isometry i of
(X ,d) such that:

∀K ∈ C(X) I(K) = i[K].
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In the late 70’s and early 80’s, several authors started to investigate relations between
the isometries of the Euclidean space En and those of the space (C(En),dH), where C(En)
denotes the family of nonempty, compact, convex subsets of En.

In [4], the author showed that all isometries of (C(En),dH) are induced by the above-
mentioned formula from the isometries of En. In [2], it was shown that the same holds for
the isometries of (C(En),dH) and in [3] the authors generalized these observations to certain
non-Euclidean cases. In 2005, in [1] the author generalized the results for Euclidean spaces
to proper, uniquely geodesic, geodesically complete metric spaces, in which geodesics do
not split.

Theorem 1 generalizes [1, Theorem 2] by omitting the assumption that the metric space
we consider is proper, that is, that all of its closed balls are compact. Therefore, it applies to
all strictly convex normed spaces with the metric generated by the norm, instead of only the
proper, thus finite-dimensional ones.

The remainder of the paper is structured as follows: in Section 2, we recall basic defini-
tions regarding metric spaces and geodesics. Then we explore the behaviour of the Hausdorff
metric on the family of nonempty compact subsets. Moreover, we introduce the notion of
midpoints and midpoint extensions. The proof of Theorem 1 is presented in Section 3.

2. PRELIMINARIES

2.1. METRIC SPACES

Let (X ,d) be a metric space. For x ∈ X and r ≥ 0, denote

B(x,r) :=
{

y ∈ X : d(x,y)< r
}
, B(x,r) :=

{
y ∈ X : d(x,y)≤ r

}
,

S(x,r) :=
{

y ∈ X : d(x,y) = r
}
,

which will be called an open ball, a closed ball and a sphere, respectively, with a centre x
and a radius r. If all closed balls are compact, we say that the space X is proper.

For A⊆ X , r ≥ 0 we define the r−hull of A as:

H(A,r) :=
{

x ∈ X : (∃a ∈ A) d(a,x)≤ r
}
=
⋃
a∈A

B(a,r).

Let (X ,d), (Y,ρ) be two metric spaces and let i : X →Y be such that ρ(i(x), i(y)) = d(x,y)
for all x,y ∈ X . If i is surjective, we will call it an isometry; otherwise, we will call it an
isometric embedding.
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2.2. GEODESICS

Let (X ,d) be a metric space and let I be an interval, that is, I is of the form:

[a,b], [a,∞) , (−∞,b] , (−∞,∞) ,

where a,b ∈ R and a≤ b. Isometric embedding γ : I → X shall be called a geodesic. In the
case when I = [a,b], we shall say that the geodesic γ : I → X connects γ(a) and γ(b).
If γ(a) = γ(b), γ shall be called trivial. Let Dom(γ) and Im(γ) denote the domain and
the image of γ , respectively.

We shall say that the metric space (X ,d) is geodesic, if for all x,y ∈ X there exists
a geodesic connecting x with y. If for all x,y ∈ X all geodesics connecting x with y have
the same image, we shall say that X is uniquely geodesic.

Geodesic metric space (X ,d) will be called geodesically complete, if for every non-trivial
geodesic γ there exists its biinfinite extension, that is, a geodesic γ̃ : (−∞,∞)→ X such that
γ̃|Dom(γ) = γ . If for every non-trivial geodesic γ in X the image of every biinfinite extension
of γ is the same, we shall say that geodesics do not split.

2.3. SPACE OF NONEMPTY COMPACT SUBSETS

Let (X ,d) be a metric space. While the Hausdorff metric dH is a metric on the family
B(X) of nonempty, closed and bounded subsets of X , we will work with the family C(X) of
nonempty compact subsets of X . The two families are different precisely in the case when X
is not a proper metric space, that is, when there are non-compact closed balls.

The next two lemmas allow us to find the value of dH in some rather special cases.

Lemma 2. Let (X ,d) be a metric space and let K ∈ C(X). Let k,g∈K be such that d(k,g) =
diam(K). Then d(K,{g}) = diam(K).

Proof. Notice that for all k̃ ∈ K we have d(g, k̃) ≤ diam(K). Therefore, since g ∈ K, we
have dH(K,{g}) ≤ diam(K). On the other hand, for r < diam(K) we have k /∈ H({g} ,r),
so K �⊆ H({g} ,r). Thus, dH(K,{g})≥ diam(K). Hence, d(K,{g}) = diam(K).

Lemma 3. Let (X ,d) be a metric space, x ∈ X and r > 0. Let K ∈ C(X) be such that K ⊆
S(x,r). Suppose there are k ∈K and s∈ S(x,r) such that d(k,s) = 2r. Then dH(K,{s}) = 2r.

Proof. First, notice that for λ < 2r we have k /∈ H({s} ,λ ), so K �⊆ H({s} ,λ ). There-
fore, dH(K,{s}) ≥ 2r. Now, notice that for all k̃ ∈ K we have d(k̃,s) ≤ d(k̃,x)+ d(x,s) =
2r, so K ⊆ H({s} ,2r). Also, {s} ⊆ H({k} ,2r) ⊆ H(K,2r), so dH(K,{s}) ≤ 2r. Thus,
dH(K,{s}) = 2r.
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The following lemmas show that the Hausdorff metric dH has fairly nice properties when
we deal with the family C(X).

Lemma 4. Let (X ,d) be a metric space. Then, for K,C ∈ C(X) we have:

dH(K,C) := min
{

r ≥ 0: K ⊆ H(C,r) ∧ C ⊆ H(K,r)
}
.

Moreover, we have:

∀K,C ∈ C(X) ∀k ∈ K ∃c ∈C d(k,c)≤ dH(K,C).

Proof. Let K,C ∈ C(X). Let us fix k ∈ K. For each n ∈ N, there exists cn ∈ C such that
d(k,cn)≤ dH(K,C)+ 1/n. Since C is compact, we have a subsequence (cnm)m and c ∈C such
that cnm → c as m→∞. Passing to the limit on a subsequence we get d(k,c)≤ dH(K,C), and
the second claim follows.

Since k ∈ K was arbitrary, we have K ⊆ H(C,dH(K,C)). In the same fashion, we get that
C ⊆ H(K,dH(K,C)). This, by the definition of dH, proves the first claim.

Lemma 5. Let (X ,d) be a metric space and let K,C ∈ C(X). Then at least one of the
following two possibilities must occur:

• ∃k ∈ K ∀c ∈C d(k,c)≥ dH(K,C);

• ∃c ∈C ∀k ∈ K d(k,c)≥ dH(K,C).

Proof. Suppose neither of the two possibilities occur. Set K is compact, so the map k �→
min

{
d(k,c) : c ∈C

}
reaches its maximum M1 on K. Thus, K ⊆ H(C,M1). Similarly,

the function c �→ min
{

d(k,c) : k ∈ K
}

reaches its maximum M2 on C, so C ⊆ H(K,M2).
Let M := max(M1,M2). By our assumption, M < dH(K,C), which is in a contradiction with
the definition of dH(K,C).

2.4. MIDPOINTS AND MIDPOINT EXTENSIONS

The following subsection is dedicated to the study of midpoints and midpoint extensions.
The lemmas will be used extensively in the proof of the main result.

Definition 6. Let (X ,d) be a metric space and let x,z ∈ X. Point y ∈ X shall be called
a midpoint between x and z, if:

d(x,y) = d(y,z) =
1
2

d(x,z).

The set of all midpoints between x and z will be denoted by Mid(x,z). In the case when this
set is a singleton, we shall denote its only element by mid(x,z).
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Lemma 7. Let (X ,d) be a metric space and let x,y,z ∈ X. Suppose that

d(x,y),d(y,z)≤ D and d(x,z)≥ 2D

for some D≥ 0. Then y ∈Mid(x,z) and all the above inequalities are, in fact, equalities.

Proof. By the triangle inequality:

2D≤ d(x,z)≤ d(x,y)+d(y,z)≤ D+D = 2D.

Therefore, all inequalities above are, in fact, equalities. In particular, we get that:

1
2

d(x,z) = D = d(x,y) = d(y,z).

Thus, y ∈Mid(x,z) and we have proved all the necessary equalities.

Corollary 8. Let (X ,d) be a metric space and let x,z ∈ X. Then

Mid(x,z) = B
(

x,
d(x,z)

2

)
∩B

(
z,

d(x,z)
2

)
.

Proof. Denote D := B
(

x, d(x,z)
2

)
∩B

(
z, d(x,z)

2

)
. Inclusion Mid(x,z) ⊆ D follows from the

definition of Mid(x,z). On the other hand, if y ∈ D, then d(x,y),d(y,z) ≤ d(x,z)
2 and by

Lemma 7 we get that y ∈Mid(x,z). Therefore, Mid(x,z)⊇ D.

Lemma 9. Let (X ,d) be a geodesic metric space. Let x,z ∈ X and y ∈ Mid(x,z). Let
γxy : [−a,0]→ X and γyz : [0,a]→ X be geodesics connecting x with y, and y with z, re-
spectively, where a := d(x,y). Then γ : [−a,a]→ X defined by the formula:

γ(t) :=

{
γxy(t), if −a≤ t ≤ 0,
γyz(t), if 0≤ t ≤ a,

is a geodesic connecting x with z.

Proof. First, let us notice that we only need to check that d(γ(s),γ(t)) = |s− t| for s≤ 0 and
t ≥ 0. Thus, let s≤ 0 and t ≥ 0.

Notice that:

d(γ(s),γ(t))≤ d(γ(s),γ(0))+d(γ(0),γ(t))
= d(γxy(s),γxy(0))+d(γyz(0),γyz(t)) = 0− s+ t−0 = |s− t| .

Therefore, d(γ(s),γ(t))≤|s− t|. On the other hand, we have:

2a−d(γ(s),γ(t)) = d(γ(−a),γ(a))−d(γ(s),γ(t))≤ d(γ(−a),γ(s))+d(γ(t),γ(a))
= d(γxy(−a),γxy(s))+d(γyz(t),γyz(a)) = a+ s+a− t = 2a−|s− t| .

Hence, d(γ(s),γ(t))≥|s− t|. Since we have proved inequalities in both directions, we have
an equality, and, since s≤ 0, t ≥ 0 were arbitrary, γ is a geodesic connecting γ(−a) = x with
γ(a) = z.
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Lemma 10. Let (X ,d) be a uniquely geodesic metric space. Then for all x,z ∈ X there exists
a unique midpoint between x and z.

Proof. First, notice that Mid(x,z) �= /0. Indeed, since X is geodesic, there is a geodesic
γ1 : [0,d(x,z)]→ X connecting x with z and γ1(

d(x,z)
2 ) ∈Mid(x,z).

Next, let us fix y,y′ ∈Mid(x,z). Since X is geodesic, there are geodesics γxy,γxy′ : [−a,0]→
X connecting x with y and y′, respectively, and geodesics γyz,γy′z : [0,a]→ X , connecting y
and y′ with z, respectively, where

a = d(x,y) = d(x,y′) = d(y,z) = d(y′,z).

Note that since y ∈Mid(x,z), we also have d(x,z) = 2a.

Let us define functions γ,γ ′ : [−a,a]→ X by the formulas:

γ(t) :=

{
γxy(t), if −a≤ t ≤ 0,
γyz(t), if 0≤ t ≤ a,

γ ′(t) :=

{
γxy′(t), if −a≤ t ≤ 0,
γy′z(t), if 0≤ t ≤ a.

By Lemma 9, γ and γ ′ are geodesics in X , connecting x with z. Therefore, since X is uniquely
geodesic, images of these geodesics are equal.

Now, notice that for every t ∈ [−a,a] we have:

d(x,γ(t)) = d(γ(−a),γ(t)) = t +a = d(γ ′(−a),γ ′(t)) = d(x,γ ′(t)),

which means that each element of the image of these geodesics is uniquely determined by its
distance from x. Thus, γ(t) = γ ′(t) for t ∈ [−a,a] and, in particular, y = γ(0) = γ ′(0) = y′.
This shows that Mid(x,z) is a singleton.

Lemma 11. Let (X ,d) be a uniquely geodesic metric space and let x,z be its elements. Then{
mid(x,z)

}
= mid({x} ,{z}).

Proof. One can easily verify that
{

mid(x,z)
} ∈ Mid({x} ,{z}) by calculating appropriate

distances. Fix K ∈Mid({x} ,{z}). Since dH({x} ,{z}) = d(x,z), we have:

K ⊆ H
(
{x} , d(x,z)

2

)
∩H

(
{z} , d(x,z)

2

)
= B

(
x,

d(x,z)
2

)
∩B

(
z,

d(x,z)
2

)
= Mid(x,z),

where the last equality follows from Corollary 8. Thus, K ⊆Mid(x,z) and, since K �= /0 as an
element of C(X) and Mid(x,z) =

{
mid(x,z)

}
by Lemma 10, we have K =

{
mid(x,z)

}
.

132



Isometries in Hausdorff metric

Lemma 12. Let (X ,d) be a uniquely geodesic metric space. Let K,C ∈ C(X) be such that
there is a unique midpoint in C(X) between them. Then dist(K,C) = dH(K,C).

Proof. By the definition of the Hausdorff metric, we have dist(K,C) ≤ dH(K,C). Suppose
that dist(K,C) < dH(K,C). Then there exist k ∈ K and c ∈C such that d(k,c) < dH(K,C).
Let g := mid(k,c). There exists r > 0 such that

B(g,r)⊆ B(k,D)∩B(c,D) and r <
d(k,c)

4
,

where D := 1
2dH(K,C). Let G be the only element of Mid(K,C). We have two possibilities:

either B(g,r)⊆ G or not.

In the first case, let γ be a geodesic connecting g with k. Denote G̃ :=G\B(g, r
4)∪{g} and

g̃ := γ( r
8). Clearly, G̃∈C(X) and we have g̃∈G but g̃ /∈ G̃. We will show that G̃∈Mid(K,C).

Let us notice that G̃⊆ G⊆ H(K,D)∩H(C,D).

Next, we will show that H(G̃,D) = H(G,D). Since G̃⊆G, we have H(G̃,D)⊆H(G,D).
Now, fix x ∈H(G,D) and suppose that x /∈H(G̃,D). Then, there exists g′ ∈ B(g, r

4) such that
d(g′,x)≤ D.

Notice that if d(g′,x)≤ r
2 , then

d(g,x)≤ d(g,g′)+d(g′,x)≤ r
4
+

r
2
≤ r ≤ D,

so, d(g,x) ≤ D. Since g ∈ G̃, this means that x ∈ H(G̃,D), despite our assumption. Oth-
erwise, let γ ′ be a geodesic connecting g′ with x. Then γ ′( r

2) ∈ B(g,r) \B(g, r
4) ⊆ G̃ and

d(x,γ ′( r
2))≤ D. Indeed, we have:

r
4
=

r
2
− r

4
≤ d(γ ′( r

2),g
′)−d(g′,g)≤ d(γ ′( r

2),g)≤ d(γ ′( r
2),g

′)+d(g′,g)≤ r
2
+

r
4
≤ r,

and
d(x,γ ′( r

2)) = d(γ ′(d(g′,x)),γ ′( r
2)) = d(g′,x)− r

2 ≤ D− r
2 ≤ D.

Thus, x ∈ H(G̃,D), despite our assumption.

We see that in both cases x∈H(G̃,D). Thus, H(G,D)⊆H(G̃,D), so H(G,D) =H(G̃,D).
Therefore, we have dH(K, G̃),dH(C, G̃) ≤ D, which, combined with dH(K,C) = 2D and
Lemma 7, gives us G̃ ∈ Mid(K,C). Since g̃ ∈ G but g̃ /∈ G̃ and G̃ ∈ Mid(K,C), we have
a contradiction with the uniqueness of the midpoint between K and C.

If B(g,r) �⊆ G, let g̃ ∈ B(g,r) \G and G̃ := G∪{g̃}. Clearly, G̃ ∈ C(X). Since G ⊆ G̃,
we have K,C⊆H(G,D)⊆H(G̃,D). On the other hand, we have G⊆H(K,D)∩H(C,D) and
B(g,r) ⊆ B(k,D)∩B(c,D), which implies that G̃ = G∪{g̃} ⊆ H(K,D)∩H(C,D). Thus,
dH(K, G̃),dH(C, G̃) ≤ D, which, combined with dH(K,C) = 2D and Lemma 7, implies that
G̃ ∈Mid(K,C). Since g̃ /∈G, but g̃ ∈ G̃ and G̃ ∈Mid(K,C), we have a contradiction with the
uniqueness of the midpoint between K and C.

Therefore, our assumption that dist(K,C) < dH(K,C) leads to a contradiction. Thus,
dist(K,C) = dH(K,C).
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Lemma 13. Let (X ,d) be a uniquely geodesic metric space and let x ∈ X, r > 0. Let F ⊆
S(x,r) be an element of C(X) such that there exists F ′ ∈Mid({x} ,F). Then F ′ is the only
element of Mid({x} ,F).

Proof. Denote F̃ :=
{

mid(x, f ) : f ∈ F
}

. Note that dH({x} ,F) = r, which implies that
dH({x} ,F ′) = dH(F ′,F) = r

2 . We will show that F ′ = F̃ , which will prove the uniqueness as
F̃ does not depend on the choice of F ′.

First, notice that since F ⊆ S(x,r), we have r = d(x, f ) for all f ∈ F . Therefore, by
Corollary 8, for all f ∈ F we have

{
mid(x, f )

}
= Mid(x, f ) = B

(
x, r

2

)∩B
(

f , r
2

)
, where the

first equality follows from the uniqueness of midpoints in X . Therefore,

F ′ ⊆ H
(
{x} , r

2

)
∩H

(
F,

r
2

)
= B

(
x,

r
2

)
∩
⋃
f∈F

B
(

f ,
r
2

)
=
⋃
f∈F

B
(

x,
r
2

)
∩B

(
f ,

r
2

)
= F̃ .

Hence, F ′ ⊆ F̃ .

Now, let us fix f̃ ∈ F̃ . There exists f ∈ F such that f̃ = mid(x, f ). By Lemma 4, there
exists f ′ ∈ F ′ such that d( f ′, f )≤ dH(F ′,F) = r

2 . Since F ′ ⊆ H({x} , r
2) = B(x, r

2), we have
d(x, f ′) ≤ r

2 . Since F ⊆ S(x,r), we have d(x, f ) = r, which, combined with the previous
inequalities and Lemma 7, gives us f ′ ∈Mid(x, f ). As midpoints are unique in X , we have
f ′ = f̃ . Thus, f̃ ∈ F ′ and, since f̃ was arbitrary, F̃ ⊆ F ′.

Lemma 14. Let (X ,d) be a uniquely geodesic metric space and let x ∈ X, r > 0. Let F ⊆
S(x,r) be nonempty and finite. Then there exists a unique midpoint in C(X) between {x} and
F.

Proof. Consider the set F̃ :=
{

mid(x, f ) : f ∈ F
}

. This set is nonempty and finite, so it
is an element of C(X). One can check that r = dH({x} ,F) and dH({x} , F̃),dH(F̃ ,F) = r

2 .
Therefore, F̃ ∈Mid({x} ,F). Hence, by Lemma 13, the claim follows.

Lemma 15. Let (X ,d) be a metric space and let i be an isometry on this space. Then:

1. ∀x,z ∈ X i
[
Mid(x,z)

]
= Mid(i(x), i(z)),

2. ∀x,y,z ∈ X y = mid(x,z) ⇐⇒ i(y) = mid(i(x), i(z)).

Proof. All statements follow from the definitions.

Definition 16. Let (X ,d) be a metric space and let x,y ∈ X. Point z ∈ X will be called
a midpoint extension by x over y, if y ∈ Mid(x,z). The set of all midpoint extensions by x
over y will be denoted by Mex(x,y). In the case when this set is a singleton, we shall denote
its only element by mex(x,z). If z ∈Mex(x,y) is such that y = mid(x,z), then z will be called
a regular extension (r.ex.) by x over y.
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Lemma 17. Let (X ,d) be a uniquely geodesic, geodesically complete metric space, in which
geodesics do not split (UGUGC space for short). Then for every x,y∈X there exists a unique
midpoint extension by x over y.

Proof. Choose x,y ∈ X . First, notice that if x = y, then x = mex(x,y). Therefore, let us
assume that x �= y. Denote a := d(x,y). Let γxy : [−a,0]→ X be a geodesic connecting x with
y and let γ̃xy be its biinfinite extension. Then z := γ̃xy(a) is a midpoint extension by x over y.

Now, fix z′ ∈Mex(x,y). Let γyz′ : [0,a]→ X be a geodesic connecting y with z′. Then, by
Lemma 9, the function γ : [−a,a]→ X defined by the formula:

γ(t) :=

{
γxy(t), if −a≤ t ≤ 0,
γyz′(t), if 0≤ t ≤ a

is a geodesic connecting x with z′. Let γ̃ be its biinfinite extension. Notice that it is also
a biinfinite extension of γxy. Since geodesics in X do not split, these extensions have the
same image.

Now, notice that the map R � t �→ (|−a− t| ,|t|) ∈ R2 is injective and for every t ∈ R we
have:[

d(x, γ̃xy(t))
d(y, γ̃xy(t))

]
=

[
d(γ̃xy(−a), γ̃xy(t))
d(γ̃xy(0), γ̃xy(t))

]
=

[
|−a− t|
|t|

]
=

[
d(γ̃(−a), γ̃(t))
d(γ̃(0), γ̃(t))

]
=

[
d(x, γ̃(t))
d(y, γ̃(t))

]
.

This, combined with the fact that γ̃xy and γ̃ have the same image, means that each element
of this image is uniquely determined by its distances from x and y. Moreover, it also implies
that γ̃xy(t) = γ̃(t) for all t ∈ R, so, in particular,

z = γ̃xy(a) = γ̃(a) = z′.

Therefore, since z′ ∈Mex(x,y) was arbitrary, the set Mex(x,y) is a singleton.

Corollary 18. Let (X ,d) be a UGUGC space. Let x ∈ X, r > 0 and y ∈ S(x,r). Then
mex(y,x) is the only element of B(x,r), which is at least 2r away from y.

Proof. Denote y′=mex(y,x). Let y′′ ∈ B(x,r) be such that d(y,y′′)≥ 2r. Then, by Lemma 7,
x ∈Mid(y,y′′), so y′′ ∈Mex(y,x). Thus, as midpoint extensions in X are unique, y′ = y′′.

Lemma 19. Let (X ,d) be a UGUGC space. Then for every x,y∈X the singleton
{

mex(x,y)
}

is an r.ex. in C(X) by {x} over {y}.

Proof. Since mid(x,mex(x,y)) = y, by Lemma 11, we have:

Mid({x} ,{mex(x,y)
}
) =

{{
mid(x,mex(x,y))

}}
=
{{y}} .

Thus,
{

mex(x,y)
}

is an r.ex. in C(X) by {x} over {y}.
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Lemma 20. Let (X ,d) be a UGUGC space. Let K,G ∈ C(X) be such that there is an r.ex. in
C(X) by K over G. Then

∀g ∈ G ∃!k ∈ K d(k,g)≤ dH(K,G).

Moreover, the above inequality is, in fact, an equality.

Proof. Let us notice that by Lemma 4, for all g ∈ G there exists k ∈ K such that d(k,g) ≤
dH(K,G). We need to prove the uniqueness. Suppose there exist g ∈ G and k1,k2 ∈ K such
that d(ki,g)≤ dH(K,G) for i ∈ {1,2}. Let C ∈ C(X) be r.ex. by K over G. Then there exists
c∈C such that d(g,c)≤ dH(G,C)= dH(K,G). By the definition of C we have G=mid(K,C)
so, by Lemma 12, we have dist(K,C) = dH(K,C) = 2dH(K,G). Thus, d(ki,c)≥ 2dH(K,G)
for i ∈ {1,2}.

By Lemma 7, the inequalities d(g,c),d(ki,g) ≤ dH(K,G) and d(ki,c) ≥ 2dH(K,G) for
i ∈ {1,2} give us that g ∈Mid(ki,c) and d(ki,g) = dH(K,G) for i ∈ {1,2}. Thus, k1,k2 ∈
Mex(c,g). Therefore, by the uniqueness of the midpoint extensions in X , we have k1 = k2.
This proves the uniqueness, and we have the equality d(k1,g) = dH(K,G) as needed.

Lemma 21. Let (X ,d) be a UGUGC space. Let K,C ∈ C(X) be such that there is a singleton
{x} ∈Mid(K,C). Then, at least one of the sets K, C is a singleton.

Proof. Denote D := dH(K,{x}). By Lemma 5, at least one of the following two statements
is true:

• ∃k ∈ K ∀c ∈C d(k,c)≥ dH(K,C) = 2D;

• ∃c ∈C ∀k ∈ K d(k,c)≥ dH(K,C) = 2D.

Suppose the first possibility occurs with k ∈ K as above. Since K,C ⊆H({x} ,D) = B(x,D),
by Lemma 7, for every c ∈C we have x ∈Mid(k,c), or, equivalently, c ∈Mex(k,x). Since
midpoint extensions in X are unique, C is a singleton. If the latter possibility occurs, we can
analogously prove that the set K is a singleton.

Lemma 22. Let (X ,d) be a metric space and let i be an isometry of this space. Then:

1. ∀x,y ∈ X i
[
Mex(x,y)

]
= Mex(i(x), i(y));

2. ∀x,y,z ∈ X z = mex(x,y) ⇐⇒ i(z) = mex(i(x), i(y));

3. ∀x,y,z ∈ X z is an r.ex. by x over y ⇐⇒ i(z) is an r.ex. by i(x) over i(y).

Proof. All statements follow directly from the definitions and Lemma 15.

136



Isometries in Hausdorff metric

3. PROOF OF THE MAIN RESULT

The proof of the main result is divided into three steps:

1. We prove that K ∈ C(X) is a singleton if and only if I(K) is a singleton,

2. We show that if, additionally, we have I({x}) = {x} for all x∈X , then I(F) =F , where
F is a finite subset of a sphere,

3. We prove that for arbitrary isometry I of (C(X),dH) there exists an isometry i of (X ,d)
such that I(K) = i[K] for all K ∈ C(X).

The first step, established in Lemma 23, plays the key role. Indeed, it allows us to construct
an isometry i of (X ,d) such that I(K) = i[K] for all singletons K. In the last step, we show
that this equality is in fact satisfied for all K ∈ C(X).

Lemma 23. Let (X ,d) be a UGUGC space. Let I be an isometry of (C(X),dH). Then
I
[
S(X)

]
=S(X), where S(X) denotes the family of all singletons of X.

Proof. We shall prove that I
[
C(X)\S(X)

] ⊆ C(X) \S(X). Suppose that this inclusion is
not satisfied. Then, there exists K ∈ C(X)\S(X) such that I(K) ∈S(X).

There exist k,g ∈ K such that d(k,g) = diam(K). Denote D := d(k,g). By Lemma 2, we
have D= dH(K,{g}). Let c :=mex(k,g). Then D= d(c,g)= dH({c} ,{g}) and 2D= d(k,c).
Therefore, k /∈ H({c} ,r) for r < 2D, so K �⊆ H({c} ,r) for r < 2D. Thus, 2D≤ dH(K,{c}),
so, by Lemma 7, {g} ∈Mid(K,{c}).

Since, by assumption, I(K) ∈ S(X), there exists k′ ∈ X such that I(K) =
{

k′
}

. Fix
g′ ∈ I({g}) and let c′′ := mex(k′,g′). Since D = dH(K,{g}) = dH(

{
k′
}
, I({g})), we have

d(k′,g′)≤ D and because of that, d(g′,c′′)≤ D. Denote C′′ := I({c})∪{c′′
}

.

Since d(g′,c′′)≤D and dH(I({g}), I({c})) =D, we have dH(I({g}),C′′)≤D. Also, since
dH(
{

k′
}
, I({c})) = 2D, we have dH(

{
k′
}
,C′′) ≥ 2D. Note that D = dH(

{
k′
}
, I({g})), so,

by Lemma 7, we have I({g}) ∈Mid(
{

k′
}
,C′′). Denote C̃ := I−1(C′′). By Lemma 15, we

have {g} ∈Mid(K,C̃). Therefore, since K /∈S(X), by Lemma 21, we have C̃ ∈S(X).

Note that X satisfies the assumptions of Lemma 19. Therefore, in C(X) there are r.ex.’s by
{c} over {g} and by C̃ over {g}. Thus, by Lemma 22, there are r.ex.’s by I({c}) over I({g})
and by C′′ over I({g}). Hence, by Lemma 20, for each of the sets I({c}), C′′ there exist
unique c′ ∈ I({c}) and c̃′′ ∈C′′ such that: d(g′,c′),d(g′, c̃′′)≤D. Since mex(k′,g′) = c′′ ∈C′′
and d(g′,c′′)≤ D, we have c̃′′ = c′′. Moreover, since I({c})⊆C′′ = I({c})∪{c′′

}
, we have

c′ = c̃′′ = c′′ = mex(k′,g′). This proves that for every g′ ∈ I({g}) we have mex(k′,g′) ∈
I({c}).

Furthermore, Lemma 20 also states that d(g′,c′) = D. Therefore, d(g′,mex(k′,g′)) = D
for every g′ ∈ I({g}) and, because of that, also d(k′,g′) = D for every g′ ∈ I({g}). This
shows that I({g})⊆ S(k′,D).
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Now, fix c̃′ ∈ I({c}). By Lemma 4, there exists g̃′ ∈ I({g}) such that d(g̃′, c̃′) ≤ D =
dH(I({g}), I({c})). We have proved that mex(k′, g̃′) is the only element of I({c}) such
that d(g̃′,mex(k′, g̃′)) ≤ D and we have d(g̃′,mex(k′, g̃′)) = D. Thus, c̃′ = mex(k′, g̃′) and
d(g̃′, c̃′) = D. This implies that d(k′, c̃′) = 2d(g̃′, c̃′) = 2D. Since c̃′ ∈ I({c}) is arbitrary,
we have I({c})⊆ S(k′,2D).

We found that I({g}) ⊆ S(k′,D) and I({c}) ⊆ S(k′,2D). Furthermore, by Lemma 15,
since {g} ∈ Mid(K,{c}), we have I({g}) ∈ Mid(

{
k′
}
, I({c})). Therefore, by Lemma 13,

we know that Mid(
{

k′
}
, I({c})) = {I({g})} and thus Mid(K,{c}) = {{g}} by Lemma 15.

Hence, by Lemma 12, we have:

2D = dH(K,{c})≤ d(g,c) = D,

which implies that D ≤ 0. However, since D = d(k,g) = diam(K) and K is not a singleton,
we have D > 0, a contradiction.

Hence, we have I
[
C(X)\S(X)

] ⊆ C(X)\S(X). Since I is a bijection, the above inclu-
sion implies that I

[
S(X)

] ⊇S(X). Because I−1 also is an isometry, we get I−1 [S(X)
] ⊇

S(X). Thus, we obtain S(X) = I
[
I−1 [S(X)

]] ⊇ I
[
S(X)

]
. We have proved inclusions in

both directions and I
[
S(X)

]
=S(X) as needed.

Remark 24. Let (X ,d) be a UGUGC space. Let I be an isometry of (C(X),dH). Since
I[S(X)] =S(X), the function i : X → X defined by:

∀x ∈ X
{

i(x)
}
= I({x})

is an isometry of (X ,d). Therefore, map J : C(X)→ C(X) defined as follows:

∀K ∈ C(X) J(K) := i−1 [I(K)
]

is an isometry of (C(X),dH) and J({x}) = {x} for every x ∈ X.

Lemma 25. Let (X ,d) be a UGUGC space. Let I be an isometry of (C(X),dH) such that
I({y}) = {y} for every y ∈ X. Let x ∈ X and r > 0. Then I(F) = F, where F is a finite subset
of S(x,r).

Proof. Denote F ′ := I(F). First, let us notice that dH({x} ,F)= r and therefore dH({x} ,F ′)=
dH(I({x}), I(F)) = r. This shows that F ′ ⊆ B(x,r). Furthermore, since, by Lemma 14,
there is a unique midpoint in C(X) between F and {x}, Lemma 15 states that there must
also be a unique midpoint between F ′ = I(F) and {x} = I({x}). Therefore, by Lemma 12,
dist(x,F ′) = r which, combined with F ′ ⊆ B(x,r), gives us F ′ ⊆ S(x,r).

Let us fix f ∈F and let f̃ :=mex( f ,x). Then d(x, f̃ ) = r as d(x, f ) = r. We have d( f , f̃ ) =
2r so, by Lemma 3, dH(F,{ f̃})= 2r. Thus, dH(F ′,{ f̃})= dH(I(F), I({ f̃}))= 2r. Therefore,
there exists a ∈ F ′ such that d(a, f̃ ) = 2r. Since, by Corollary 18, f is the only element of
B(x,r) such that d( f , f̃ )= 2r and F ′ ⊆B(x,r), we have f = a∈F ′. Since f ∈F was arbitrary,
we have F ⊆ F ′.
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Next, let f ′ ∈ F ′ and let f̃ ′ := mex( f ′,x). Then d(x, f̃ ′) = r. We have d( f ′, f̃ ′) = 2r and
F ′ ⊆ S(x,r), which, by Lemma 3, implies that dH(F ′,{ f̃ ′}) = 2r. Therefore,

dH(F,{ f̃ ′}) = dH(I(F), I({ f̃ ′})) = dH(F ′,{ f̃ ′}) = 2r,

so dH(F,{ f̃ ′}) = 2r. Therefore, there exists b ∈ F such that d(b,{ f̃ ′}) = 2r. Since F ⊆
B(x,r) and, by Corollary 18, f ′ is the only element of B(x,r) such that d( f ′, f̃ ′) = 2r, we
have f ′ = b ∈ F . Since f ′ ∈ F ′ was arbitrary, we have proved that F ′ ⊆ F .

Since we have proved inclusions in both directions, we have F =F ′= I(F) as needed.

Proof of Theorem 1. Since I is an isometry of (C(X),dH), by Remark 24, we know that
there exists an isometry i : X → X such that for all x ∈ X we have i[{x}] = I({x}). Remark
24 also states that the function J : C(X)→ C(X) defined by the formula J(·) = i−1[I(·)] is
an isometry of (C(X),dH) such that for all x ∈ X we have J({x}) = {x}. Note that if we
prove that J(K) = K for all K ∈ C(X), then I(K) = i[K] for all K ∈ C(X) as needed.

Let us fix K ∈ C(X). Suppose that J(K) �= K. Then K �⊆ J(K) or K �⊇ J(K). Let us
first consider the former possibility, that is, suppose that K �⊆ J(K). Thus, there exists k ∈
K \J(K). Since J(K) is compact, there exists k′ ∈ J(K) such that d(k,k′) = dist(k,J(K))> 0.
Denote μ := 1

2d(k,k′).

Since k /∈ J(K), the family {B(k̃, 1
2d(k, k̃)) : k̃ ∈ J(K)} is an open cover of J(K). Since

J(K) is compact, there exist k′1, . . . , k′n ∈ J(K) such that {B(k′i, 1
2d(k,k′i)) : i ∈ {1, . . . ,n}} is

a finite subcover of J(K).

Take λ > 2μ +diam(J(K)) and fix i ∈ {1, . . . ,n}. First, we shall prove that d(k,k′i)< λ .
Indeed, we have:

d(k,k′i)≤ d(k,k′)+d(k′,k′i) = 2μ +d(k′,k′i)≤ 2μ +diam(J(K))< λ .

There exists a geodesic γkk′i :
[
0,d(k,k′i)

]→ X connecting k with k′i. It has a biinfinite exten-
sion γ̃kk′i . Let ci := γ̃kk′i(λ ). Since, by definition, γ̃kk′i |Dom(γkk′i

) = γkk′i , we have γ̃kk′i(0) = k and

γ̃kk′i(d(k,k
′
i)) = k′i. Therefore, since d(k,k′i)< λ and γ̃kk′i is a geodesic, we have:

λ = d(k,ci) = d(k,k′i)+d(k′i,ci).

Denote S := {c1, . . . , cn}. Since d(k,ci) = λ for all i ∈ {1, . . . ,n}, we have S ⊆ S(k,λ ).
This shows that for r < λ we have {k} �⊆ H(S,r) and, since {k} ⊆ K, also K �⊆ H(S,r).
Therefore, dH(K,S)≥ λ .

Fix i ∈ {1, . . . ,n}. We have B(k′i,
1
2d(k,k′i))⊆ B(ci,λ −μ). Indeed, since

1
2

d(k,k′i)+d(k′i,ci) = d(k,k′i)+d(k′i,ci)− 1
2

d(k,k′i) = λ − 1
2

d(k,k′i)≤ λ −μ,

we have:

B
(

k′i,
1
2

d(k,k′i)
)
⊆ B

(
ci,

1
2

d(k,k′i)+d(k′i,ci)

)
⊆ B(ci,λ −μ).
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Since {B(k′i, 1
2d(k,k′i)) : i ∈ {1, . . . ,n}} is a finite subcover of J(K), we have:

J(K)⊆
n⋃

i=1

B
(

k′i,
1
2

d(k,k′i)
)
⊆

n⋃
i=1

B(ci,λ −μ)⊆
n⋃

i=1

B(ci,λ −μ) = H(S,λ −μ).

Next, since for all i ∈ {1, . . . ,n} we have d(k,k′i)≥ 2μ , the equations

λ = d(k,ci) = d(k,k′i)+d(k′i,ci)

tell us that d(k′i,ci) ≤ λ − 2μ . Therefore, as all k′i are elements of J(K), we have S ⊆
H(J(K),λ −2μ). Hence, by the definition of the Hausdorff metric, dH(S,J(K))≤ λ −μ .

Since S ⊆ S(k,λ ) is finite, by Lemma 25 we get J(S) = S. We arrive at a contradiction,
because

λ ≤ dH(S,K) = dH(J(S),J(K)) = dH(S,J(K))≤ λ −μ

implies that λ ≤ λ −μ which is impossible, since μ > 0. Therefore, K ⊆ J(K).

We have proved that if J is an isometry such that J({x}) = {x} for all x ∈ X , then for
all K ∈ C(X) we have K ⊆ J(K). Notice that the isometry J−1 also has the property that
J−1({x}) = {x} for all x ∈ X . Therefore, we can use the above approach to the set J(K) ∈
C(X) to prove that

J(K)⊆ J−1 (J(K)
)
= K.

Therefore, K ⊆ J(K) and J(K)⊆ K, so K = J(K). Since K ∈ C(X) was arbitrary, we have:

∀K ∈ C(X) J(K) = K,

which, as we mentioned at the beginning, ends the proof.
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1. INTRODUCTION

The reason for writing this paper is the studying of differential equations with fractional
order derivative. Fractional calculus has its origins in the 19th century. Abel, Liouville
and Riemann introduced the concept of Riemann-Liouville derivative. However, solving
fractional differential equations with this derivative requires defining the initial condition
of the fractional order. Nevertheless, in 1967 the Caputo derivative was proposed and this
fractional derivative can be applied to model various physical phenomena, because the initial
condition can be given as a derivative of integer order.

What makes fractional calculus so interesting is the fact that fractional derivatives are non
local operators. Thanks to this property, they are able to model the memory effects e.g. in
fractional Stefan problem (see e.g. [5], [14], [15] and [16]). An equally interesting area of
research deals with inverse problems in which we want for example to determine the order of
fractional derivative which characterizes the diffusion. It is interesting from an application
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point of view, because very often it is difficult to measure this parameter directly (see e.g.
[4] and [8]).

To prove the existence and uniqueness of the solution of some fractional differential equa-
tion, first we have to define the domain of an appropriate fractional operator. It is necessary
in order to define the space in which we want to find the solution of the equation.

In order to better explain our motivation, we recall that the fractional integral operator Iα

defined on L2(0,T ) is given by the formula

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ for f ∈ L2(0,T ), Reα > 0. (1)

Moreover, by ∂ α := d
dt I1−α we denote the Riemann-Liouville derivative and by Dα we de-

note the fractional Caputo derivative given by the formula Dαu(t) := ∂ α [u(·)−u(0)](t). We
are especially interested in the research of the time fractional diffusion equation

∂ α(u−u0)−div(A(t,x)Du) = f , t ∈ (0,T ), x ∈Ω, (2)

where A = (ai, j) is Rn×n valued.

It is proved that Iα(L2(0,T )) = [L2(0,T ), 0H1(0,T )]α (see [6]). Moreover, we know that

∂ α : [L2(0,T ), 0H1(0,T )]α → L2(0,T )

is an isomorphism, and ∂ α Iα f = f for f ∈ L2(0,T ), Iα∂ α f = f for
f ∈ [L2(0,T ), 0H1(0,T )]α . From the above considerations, we understand that the charac-
terization of the image of fractional integral operator Iα is necessary in order to define the
domain of the Riemann-Liouville derivative.

The purpose of this paper is to provide the characterization of the interpolation space
[L2(0,T ), 0H1(0,T )]α in terms of some subspace of Sobolev-Slobodeckij space. It is a well
known result, but it is difficult to find a complete proof in literature. This is the reason why
the authors decided to provide a detailed and direct proof of this result. We were inspired by
Theorem 11.6 and remark 11.5 in [9]. However, in this paper we present an alternative proof
of Theorem 11.6 and remark 11.5 from [9].

The analysis of that proof is the first step to characterize Iα(Lp(0,T )) for p �= 2. However,
in this case we will need more sophisticated spaces in order to describe the interpolation
space [Lp(0,T ), 0W 1,p(0,T )]α . We suppose that it would require using Bessel potential
spaces.

Our paper is divided into seven sections. In Section 2, we present some basic definitions.
In particular, we recall the definition of the complex interpolation space and we define some
fractional Sobolev spaces which are very important for our further considerations. Then, in
Section 3, we formulate the main result. In Section 4, we recall the definition and some
useful properties of the strongly continuous semigroup. Moreover, we find the infintesimal
generator of the translation semigroup. Finally, we will formulate another interesting char-
acterization of the complex interpolation space. In Section 5, we are going to prove the
Hardy’s inequality. Furthermore, we will present some imbedding results. In Section 6, we
will prove the main result of the paper. In Section 7, the reader can find an appendix in which
we collect some basic results that are used in the article.
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2. NOTATION

Let us recall some definitions which will be very useful in our further considerations.

Definition 1 (Chapter 11, Section 11.1 in [11]). Let X0, X1 be a couple of Banach spaces
with norms ‖ ·‖0 and ‖ ·‖1, respectively. Then (X0,X1) is an interpolation pair if there exists
a Hausdorff vectorial topological space X such that Xi ↪→ X for i = 0,1.

Definition 2 (Def. 11.1.2 in [11] - Complex interpolation method). Let (X0,X1) be an inter-
polation pair. By F(X0,X1) we denote the set of functions f : S = {z ∈ C : 0≤ Rez≤ 1} →
X0 +X1 such that

1. f is continuous and bounded in S,

2. f is analytic in S0 = {z ∈ C : 0 < Rez < 1},
3. f (it) ∈ X0 and f (it +1) ∈ X1 for all t ∈ R,

4. functions t �→ f (it) and t �→ f (it +1) are bounded and continuous with respect to the
spaces X0 and X1, respectively.

We provide the space F(X0,X1) with the norm

‖ f‖F(X0,X1) = max{sup
t∈R
‖ f (it)‖X0 ,sup

t∈R
‖ f (1+ it)‖X1}.

We define the space
[X0,X1]θ = { f (θ) : f ∈ F(X0,X1)}

with the norm
‖φ‖θ = inf{‖ f‖F(X0,X1) : f (θ) = φ}.

Definition 3 (Def. 1.3.2.1 in [3]). Let Ω be an open subset of Rn and 1 ≤ p < +∞. We
denote by W s,p(Ω) the space of all distributions u defined in Ω, such that

1. Dαu ∈ Lp(Ω), for |α| ≤ m, when s = m is a nonnegative integer,

2. u ∈W m,p(Ω) and ∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p
|x− y|n+σ p dxdy <+∞

for |α|= m, when s = m+σ is nonnegative and is not an integer.

We define a Banach norm on W s,p(Ω) by

‖u‖W m,p(Ω) =

{
∑
|α|≤m

∫
Ω
|Dαu|pdx

} 1
p
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in the case 1., and by

‖u‖W s,p(Ω) =

{
‖u‖p

W m,p(Ω)
+ ∑
|α|=m

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p
|x− y|n+σ p dxdy

} 1
p

in the case 2.

Definition 4. Let T > 0 and α ∈ (0,1). By Hα(0,T ) we denote the space

Hα(0,T ) :=W α,2(0,T )

and provide it with the norm

‖u‖Hα (0,T ) =

{
‖u‖2

L2(0,T ) +
∫ T

0

∫ T

0

|u(x)−u(y)|2
|x− y|1+2α dxdy

} 1
2

.

Definition 5. Let Ω = (0,T ). We define

0H1(Ω) = {u : u ∈ H1(Ω), u(0) = 0}.

3. THE MAIN RESULT

Our purpose is to show the following theorem:

Theorem 6. Let T > 0. Then, for all α ∈ (0,1), we have

[L2(0,T ), 0H1(0,T )]α = 0Hα(0,T ),

where

0Hα(0,T ) =

⎧⎪⎨⎪⎩
Hα(0,T ) for α ∈ (0, 1

2),

{H 1
2 (0,T ) :

∫ T
0
|u(t)|2

t dt < ∞} for α = 1
2 ,

{Hα(0,T ) : u(0) = 0} for α ∈ (1
2 ,1),

and the norm is defined by

‖u‖0Hα (0,T ) =

⎧⎨⎩
‖u‖Hα (0,T ) for α �= 1

2 ,(
‖u‖2

H
1
2 (0,T )

+
∫ T

0
|u(t)|2

t dt
) 1

2
for α = 1

2 ,

where

‖u‖Hα (0,T ) =

{
‖u‖2

L2(0,T ) +
∫ T

0

∫ T

0

|u(x)−u(y)|2
|x− y|1+2α dxdy

} 1
2

.
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4. SEMIGROUPS AND THEIR PROPERTIES

Definition 7 (Def. 1.1 in [13]). Let X be a Banach space. A one parameter family T (t),
0 ≤ t < ∞, of bounded linear operators from X into X is a semigroup of bounded linear
operators on X if

1. T (0) = I (I is the identity operator on X),

2. T (t + s) = T (t)T (s) for every t,s≥ 0 (the semigroup property).

Definition 8 (Definition 2.1 in [13]). A semigroup T (t), 0≤ t < ∞, of bounded linear oper-
ators on X is a strongly continuous semigroup of bounded linear operators if

lim
t↓0

T (t)x = x for every x ∈ X .

Definition 9 (Section 1.1 in [13]). The linear operator A defined by

D(A) =
{

x ∈ X : lim
t↓0

T (t)x− x
t

exists in X
}

and

Ax = lim
t↓0

T (t)x− x
t

for x ∈ D(A)

is the infinitesimal generator of the semigroup T (t), where D(A) is the domain of A.

Proposition 10 (Section I.5.a in [1]). For every strongly continuous semigroup (T (t))t≥0,
there exist constants ω ∈ R and M ≥ 1 such that

‖T (t)‖ ≤Meωt (3)

for all t ≥ 0.

Definition 11 (Section I.5.a in [1]). For a strongly continuous semigroup (T (t))t≥0 we call

ω0 := inf{ω ∈ R : ∃ Mω ≥ 1 such that ‖T (t)‖ ≤Mωeωt ∀ t ≥ 0}

its growth bound. Moreover, a semigroup is called bounded if we can take ω = 0 in (3), and
contractive if ω = 0 and M = 1 is possible.

Theorem 12 (Thr. 1.10 in [1]). Let (T (t))t≥0 be a strongly continuous semigroup on the
Banach space X and take constants ω ∈ R, M ≥ 1 such that

‖T (t)‖ ≤Meωt

for t ≥ 0. For the generator (A,D(A)) of (T (t))t≥0, the following properties hold.
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1. If λ ∈ C such that R(λ )x :=
∫ ∞

0 e−λ sT (s)xds exists for all x ∈ X , then λ ∈ ρ(A) and
R(λ ,A) = R(λ ).

2. If Reλ > ω , then λ ∈ ρ(A), and the resolvent is given by the integral expression in 1.

3. ‖R(λ ,A)‖ ≤ M
Reλ−ω for all Reλ > ω .

Definition 13. Let −∞ < a < b <+∞. On the Banach space Lp(a,b), 1≤ p≤ ∞, we define
the right translation semigroup by

(Tr(t) f )(x) :=
{

f (x− t) if x− t > a,
0 if x− t < a

for all t ≥ 0.

Remark 1. We observe that the one parameter family {Tr(t)}t≥0 defined in Definition 13 is
actually a semigroup. To this purpose, we show that {Tr(t)}t≥0 satisfy the conditions of
Definition 7. Let f ∈ Lp(a,b) and 1≤ p≤ ∞. We have
1.

(Tr(0) f )(x) =
{

f (x) if x > a,
0 if x < a,

but we always take x ∈ (a,b), so (Tr(0) f )(x) = f (x) for x ∈ (a,b). Hence, T (0) = I.
2. Let t,s≥ 0. We get

(Tr(t)Tr(s) f )(x) =
{

(Tr(s) f )(x− t) if x− t > a,
0 if x− t < a

=

{
f (x− t− s) if x− t− s > a,
0 if x− t− s < a

= (Tr(t + s) f )(x).

Thus, {Tr(t)}t≥0 is really a semigroup.

Remark 2. Let (Tr(t))t≥0 be the right translation semigroup. Then

Tr(t) = 0

for all t ≥ b−a.

Remark 3. The right translation semigroup (Tr(t))t≥0 defined on the Banach space Lp(a,b),
1≤ p≤ ∞, is a contractive semigroup, as shown below. We see that:

(i) if t ∈ [0,b−a), then we have

‖Tr(t) f‖p
Lp(a,b) =

∫ b

a
|(Tr(t) f )(x)|pdx =

∫ b

a+t
| f (x− t)|pdx

=
∫ b−t

a
| f (s)|pds≤

∫ b

a
| f (s)|pds = ‖ f‖p

Lp(a,b)
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for 1≤ p < ∞ and

‖Tr(t) f‖L∞(a,b) = esssup
x∈(a,b)

|Tr(t) f (x)|= esssup
x∈(a+t,b)

| f (x− t)|

= esssup
s∈(a,b−t)

| f (s)| ≤ esssup
s∈(a,b)

| f (s)|= ‖ f‖L∞(a,b)

for p = ∞,

(ii) if t ≥ b−a, then we have

‖Tr(t) f‖Lp(a,b) = 0≤ ‖ f‖Lp(a,b),

for 1≤ p≤ ∞.

Hence, for 1≤ p≤ ∞ we get

‖Tr(t)‖Lp(a,b) ≤ 1 for all t ≥ 0.

Proposition 14 (Section II.2.b in [1]). The generator of the (right) translation semigroup
(Tr(t))t≥0 on the space X := Lp(a,b), 1≤ p < ∞, is given by

A f :=− f ′

with domain:

D(A) = { f ∈ Lp(a,b) : f absolutely continuous and f ′ ∈ Lp(a,b)}.

Proof. Let B : D(B)→ Lp(a,b) be the infinitesimal generator of the semigroup (Tr(t))t≥0
according to the Definition 9. We want to show that B = A.
1. In the first step, we will show that B⊂ A. We take f ∈ D(B). From Definition 9 we know
that

B f = lim
t↓0

Tr(t) f − f
t

in Lp(a,b). (4)

Let c,d ∈ (a,b). We have Lp(a,b) ↪→ Lp(c,d) ↪→ L1(c,d), and hence∣∣∣∣∫ d

c

Tr(t) f (x)− f (x)
t

dx−
∫ d

c
B f (x)dx

∣∣∣∣≤ ∫ d

c

∣∣∣∣Tr(t) f (x)− f (x)
t

−B f (x)
∣∣∣∣dx

=

∥∥∥∥Tr(t) f − f
t

−B f
∥∥∥∥

L1(c,d)

≤C
∥∥∥∥Tr(t) f − f

t
−B f

∥∥∥∥
Lp(a,b)

.

From (4) we know that the right hand side of the above inequality converges to 0 as t ↓ 0.
Thus, we have ∫ d

c

Tr(t) f (x)− f (x)
t

dx t→0+→
∫ d

c
B f (x)dx. (5)
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We have t → 0+, so we can assume that t is so small that c− t > a. Due to this observation,
we can write∫ d

c

Tr(t) f (x)− f (x)
t

dx =
1
t

∫ d

c
Tr(t) f (x)dx− 1

t

∫ d

c
f (x)dx

=
1
t

∫ d−t

c−t
f (x)dx− 1

t

∫ d

c
f (x)dx =−1

t

∫ d

d−t
f (x)dx+

1
t

∫ c

c−t
f (x)dx.

Using the Lebesgue Differentiation Theorem, we get

−1
t

∫ d

d−t
f (x)dx+

1
t

∫ c

c−t
f (x)dx t→0+→ − f (d)+ f (c) for a.e. c,d ∈ (a,b). (6)

From (5) and (6) we have

f (d) = f (c)+
∫ d

c
(−B f )(x)dx for a.e. c,d ∈ (a,b).

We set c0 ∈ (a,b) such that

f (d) = f (c0)+
∫ d

c0

(−B f )(x)dx for a.e. d ∈ (a,b).

Let

f̃ (d) := f (c0)+
∫ d

c0

(−B f )(x)dx for all d ∈ (a,b).

Then we have f = f̃ a.e. in (a,b) and f̃ (c0) = f (c0). Thus,

f̃ (d) = f̃ (c0)+
∫ d

c0

(−B f̃ )(x)dx for all d ∈ (a,b).

If we take d1,d2 ∈ (a,b), then we have

f̃ (d1) = f̃ (c0)+
∫ d1

c0

(−B f̃ )(x)dx

and

f̃ (d2) = f̃ (c0)+
∫ d2

c0

(−B f̃ )(x)dx.

Hence, we get

f̃ (d2) = f̃ (d1)+
∫ d2

d1

(−B f̃ )(x)dx for all d1,d2 ∈ (a,b).

Thus, according to the Theorem 28, f̃ is an absolutely continuous function with derivative
(almost everywhere) equal to −B f̃ ∈ Lp(a,b). Thus, we have

D(B)⊂ D(A) and A
∣∣
D(B) = B. (7)
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2. In the second step, we will deduce that B = A. To this purpose we make the following
observations:
(i) Translation semigroup is a contractive semigroup, so

‖Tr(t)‖Lp(a,b) ≤Meωt

for all t ≥ 0 with M = 1 and ω = 0. Hence, from Theorem 12, we obtain that 1 ∈ ρ(B).
(ii) We will also show below that 1 ∈ ρ(A). We know that

1 ∈ ρ(A)⇔ there exists the bounded operator (A− I)−1 on Lp(a,b).

We can see that for f ∈ Lp(a,b)

(A− I)−1 f = u⇔ f = (A− I)u⇔ f =−u′ −u,

where u ∈ D(A). Thus, 1 ∈ ρ(A) if and only if for all f ∈ Lp(a,b) there exists a unique
solution of the following equation:

f =−u′ −u (8)

and this solution belongs to D(A). It is easy to see that the solution of (8) is given by

u(t) =−
∫ t

a
es−t f (s)ds.

Thus, we have

((A− I)−1 f )(t) =−
∫ t

a
es−t f (s)ds =−

∫ t

a
e−(t−s) f (s)ds =−( f ∗ e−s)(t),

and from Young’s convolution inequality we get

‖(A− I)−1 f‖Lp(a,b) = ‖ f ∗ e−s‖Lp(a,b) ≤ ‖e−s‖L1(a,b)‖ f‖Lp(a,b) = |e−b− e−a|‖ f‖Lp(a,b).

Hence, we have 1 ∈ ρ(A).
(iii) Due to (7) and observation (i), we obtain

(I−A)(D(B)) = (I−B)(D(B)) = Lp(a,b).

Moreover, using observation (ii) we get

D(A) = (I−A)−1(Lp(a,b)).

Hence, we get
D(A) = (I−A)−1(I−A)(D(B)) = D(B),

and then A = B.
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Now, we introduce some facts which will be necessary to formulate another characteriza-
tion of complex interpolation space.
Let X and Y be two Hilbert spaces which we assume to be separable with

X ⊂ Y, X dense in Y with continuous injection. (9)

Let G(t) be a continuous semigroup on Y , that is:⎧⎨⎩
G(t) ∈ B(Y,Y ) ∀ t ≥ 0, G(0) = I,
∀y ∈ Y, ‖G(t)y− y‖Y → 0 as t ↓ 0,
G(t)G(s) = G(t + s) ∀t,s≥ 0.

(10)

Let A be the infinitesimal generator of G(t), with domain D(A), which is a Hilbert space
for the norm of the graph (‖y‖2

Y +‖Ay‖2
Y )

1
2 . We assume that

D(A) = X (with equivalent norms) (11)

We also assume that
∃C > 0 ∀ t ≥ 0 ‖G(t)‖B(Y,Y ) ≤C. (12)

Theorem 15 (Chapter 1, Thr. 10.1 in [9]). Let X ,Y satisfy (9) and let G(t)t≥0 be any semi-
group which satisfies (10), (11) and (12). For θ ∈ (0,1), the following three statements are
equivalent:

a ∈ [X ,Y ]θ , (13)⎧⎨⎩
There exists a function u which satisfies:
a = u(0), tαu ∈ L2(0,∞;X),

tα du
dt ∈ L2(0,∞;Y ), θ = 1

2 +α,
(14)

tα−1(G(t)a−a) ∈ L2(0,∞;Y ). (15)

Furthermore, the norms

‖a‖[X ,Y ]θ and
(
‖a‖2

Y +
∫ ∞

0
t2(α−1)‖G(t)a−a‖2

Y dt
) 1

2

are equivalent.

5. AUXILIARY LEMMAS

In this chapter we will present the proof of the famous Hardy’s inequality. In Section 5.2.
we will show that the space of smooth functions with compact support is dense in Hα(0,+∞)
for 0 < α ≤ 1

2 . Moreover, in Theorem 23 we show an important imbedding result, which we
then use in the proof of Theorem 6.
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5.1. HARDY’S INEQUALITY

Now, we formulate the convenient form of Hardy’s inequality, which will be necessary
for us in the proof of Theorem 23.

Definition 16 (Chapter 1, Section 1.4.4 in [3]). Let 1≤ p≤+∞ and α ∈R. By Lp,α(0,+∞)
we denote the space of all measurable functions u defined in (0,+∞) such that

‖u‖p
Lp,α (0,+∞)

=
∫ ∞

0
|u(t)tα |pdt <+∞

in the case when 1≤ p <+∞, and

‖u‖L∞,α (0,+∞) = esssup
t>0

|tαu(t)|<+∞

in the case when p =+∞.

Theorem 17 ([Chapter 1, Section 1.4.4 in [3] - Hardy’s inequality). Let 1 ≤ p ≤ +∞. We
define two linear operators H and L by

(Hu)(t) =
1
t

∫ t

0
u(s)ds,

(Lu)(t) =
1
t

∫ ∞

t
u(s)ds.

If 1 ≤ p ≤ +∞, then H is linear and continuous in Lp,α(0,+∞) if and only if α + 1
p < 1,

while L is linear and continuous in Lp,α(0,+∞) if and only if α + 1
p > 1. In both cases the

norm of the operator is bounded by |α + 1
p −1|−1.

Proof. 1. Case 1≤ p <+∞.
(i) We will show that H is continuous in Lp,α(0,+∞) if and only if α + 1

p < 1.

• First, we assume that α + 1
p < 1 and we want to show that the operator H is continuous

in Lp,α(0,+∞), that is∥∥∥∥1
t

∫ t

0
u(s)ds

∥∥∥∥
Lp,α (0,+∞)

≤C‖u‖Lp,α (0,+∞). (16)

We perform some calculations:∥∥∥∥1
t

∫ t

0
u(s)ds

∥∥∥∥p

Lp,α (0,+∞)

=

∥∥∥∥tα
(

1
t

∫ t

0
u(s)ds

)∥∥∥∥p

Lp(0,+∞)

=
∫ ∞

0

∣∣∣∣tα
(

1
t

∫ t

0
u(s)ds

)∣∣∣∣pdt

s=ey
=

∫ ∞

0

∣∣∣∣tα
(

1
t

∫ ln t

−∞
u(ey)eydy

)∣∣∣∣pdt
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t=ex
=
∫
R

∣∣∣∣exα
(

e−x
∫ x

−∞
u(ey)eydy

)∣∣∣∣pexdx

=
∫
R

∣∣∣∣exαe−xe
x
p

∫ x

−∞
u(ey)eydy

∣∣∣∣pdx

=
∫
R

∣∣∣∣ex(α+ 1
p−1)

∫ x

−∞
u(ey)eydy

∣∣∣∣pdx

=
∫
R

∣∣∣∣∫ x

−∞
e(x−y)(α+ 1

p−1)ey(α+ 1
p−1)u(ey)eydy

∣∣∣∣pdx

=
∫
R

∣∣∣∣∫ x

−∞
e(x−y)(α+ 1

p−1)ey(α+ 1
p )u(ey)dy

∣∣∣∣pdx

ũ(y):=ey(α+ 1
p )u(ey)

=

∥∥∥∥∫ x

−∞
e(x−y)(α+ 1

p−1)ũ(y)dy
∥∥∥∥p

Lp(R)

.

Moreover,

‖u‖p
Lp,α (0,+∞)

= ‖tαu‖p
Lp(0,+∞)

=
∫ ∞

0
|tαu(t)|pdt t=ex

=
∫
R
|exαu(ex)|pexdx

=
∫
R
|ex(α+ 1

p )u(ex)|pdx =
∫
R
|ũ(x)|pdx = ‖ũ‖p

Lp(R)
.

Thus, inequality (16) is equivalent to∥∥∥∥∫ x

−∞
e(x−y)(α+ 1

p−1)ũ(y)dy
∥∥∥∥

Lp(R)

≤C‖ũ‖Lp(R). (17)

Now, we show (17). We notice that∫ x

−∞
e(x−y)(α+ 1

p−1)ũ(y)dy = (E ∗ ũ)(x),

where

E(x) =

{
e(α+ 1

p−1)x if x≥ 0,
0 if x < 0.

Furthermore,

‖E‖L1(R) =
∫ ∞

0
e(α+ 1

p−1)xdx =
1

1−α− 1
p .

Finally, from Young’s inequality for convolutions we get∥∥∥∥∫ x

−∞
e(x−y)(α+ 1

p−1)ũ(y)dy
∥∥∥∥

Lp(R)

= ‖E ∗ ũ‖Lp(R)

≤ ‖E‖L1(R)‖ũ‖Lp(R) =
1

1−α− 1
p

‖ũ‖Lp(R).

Thus, we have (17), and hence (16).
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• We want to show that if H is continuous in Lp,α(0,+∞), then α + 1
p < 1. We prove

it by contradiction. We assume that α + 1
p ≥ 1. We will show that there exists

u ∈ Lp,α(0,+∞) such that the following inequality fails:∥∥∥∥1
t

∫ t

0
u(s)ds

∥∥∥∥
Lp,α (0,+∞)

≤C‖u‖Lp,α (0,+∞). (18)

We take uR(t) = t−(α+ 1
p )χ( 1

R ,R)
(t) for some R > 0. Then

‖uR‖p
Lp,α (0,+∞)

=
∫ R

1
R

tα p|uR(t)|pdt =
∫ R

1
R

tα pt−α p−1dt = 2lnR

and for α + 1
p > 1 we have

‖HuR‖p
Lp,α (0,+∞)

=
∫ ∞

0
tα p|HuR(t)|pdt =

∫ ∞

0
tα p
∣∣∣∣1t
∫ t

0
uR(s)ds

∣∣∣∣pdt

=
∫ ∞

0
tα p
∣∣∣∣1t
∫ t

0
s−α− 1

p χ( 1
R ,R)

(s)ds
∣∣∣∣pdt

=
∫ R

1
R

tα p
∣∣∣∣1t
∫ t

1
R

s−α− 1
p ds
∣∣∣∣pdt +

∫ ∞

R
tα p
∣∣∣∣1t
∫ R

1
R

s−α− 1
p ds
∣∣∣∣pdt

=

∫ R

1
R

t p(α−1)
∣∣∣∣∫ t

1
R

s−α− 1
p ds
∣∣∣∣pdt +

∫ ∞

R
t p(α−1)

∣∣∣∣∫ R

1
R

s−α− 1
p ds
∣∣∣∣pdt

=
∫ R

1
R

t p(α−1)
∣∣∣∣ s−α− 1

p+1

−α− 1
p +1

∣∣∣∣s=t

s= 1
R

∣∣∣∣pdt

+
∫ ∞

R
t p(α−1)

∣∣∣∣ s−α− 1
p+1

−α− 1
p +1

∣∣∣∣s=R

s= 1
R

∣∣∣∣pdt

=
∫ R

1
R

t p(α−1)
∣∣∣∣ s−α− 1

p+1

−α− 1
p +1

∣∣∣∣s=t

s= 1
R

∣∣∣∣pdt

+
∫ ∞

R
t p(α−1)

∣∣∣∣ s−α− 1
p+1

−α− 1
p +1

∣∣∣∣s=R

s= 1
R

∣∣∣∣pdt

=
∫ R

1
R

1
|−α− 1

p +1|p t p(α−1)|Rα+ 1
p−1− t−α− 1

p+1|pdt

+
∫ ∞

R

1
|−α− 1

p +1|p t p(α−1)|Rα+ 1
p−1−R−α− 1

p+1|pdt

=
∫ R

1
R

1
|−α− 1

p +1|p t p(α−1)|Rα+ 1
p−1− t−α− 1

p+1|pdt

+
1

|−α− 1
p +1|p |R

α+ 1
p−1−R−α− 1

p+1|p
∫ ∞

R
t p(α−1)dt
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=+∞,

because p(α−1)>−1.
If α + 1

p = 1, then

‖HuR‖p
Lp,α (0,+∞)

=
∫ ∞

0
tα p|HuR(t)|pdt =

∫ ∞

0
tα p
∣∣∣∣1t
∫ t

0
uR(s)ds

∣∣∣∣pdt

=
∫ ∞

0
tα p
∣∣∣∣1t
∫ t

0
s−α− 1

p χ( 1
R ,R)

(s)ds
∣∣∣∣pdt

=
∫ R

1
R

tα p
∣∣∣∣1t
∫ t

1
R

s−α− 1
p ds
∣∣∣∣pdt +

∫ ∞

R
tα p
∣∣∣∣1t
∫ R

1
R

s−α− 1
p ds
∣∣∣∣pdt

=

∫ R

1
R

t p(α−1)
∣∣∣∣∫ t

1
R

s−α− 1
p ds
∣∣∣∣pdt +

∫ ∞

R
t p(α−1)

∣∣∣∣∫ R

1
R

s−α− 1
p ds
∣∣∣∣pdt

=
∫ R

1
R

t−1
∣∣∣∣∫ t

1
R

s−1ds
∣∣∣∣pdt +

∫ ∞

R
t−1
∣∣∣∣∫ R

1
R

s−1ds
∣∣∣∣pdt

=
∫ R

1
R

t−1(ln t + lnR)pdt +(2lnR)p
∫ ∞

R
t−1dt =+∞.

Thus, inequality (18) fails for uR.

(ii) We will show that L is linear and continuous in Lp,α(0,+∞) if and only if α + 1
p >

1.

• We want to show that if α + 1
p > 1, then the operator L is continuous in Lp,α(0,+∞).

It means that we are going to show∥∥∥∥1
t

∫ ∞

t
u(s)ds

∥∥∥∥
Lp,α (0,+∞)

≤C‖u‖Lp,α (0,+∞). (19)

We perform similar calculations as for the operator H:∥∥∥∥1
t

∫ ∞

t
u(s)ds

∥∥∥∥p

Lp,α (0,+∞)

=

∥∥∥∥tα
(

1
t

∫ ∞

t
u(s)ds

)∥∥∥∥p

Lp(0,+∞)

=
∫ ∞

0

∣∣∣∣tα
(

1
t

∫ ∞

t
u(s)ds

)∣∣∣∣pdt

s=ey
=

∫ ∞

0

∣∣∣∣tα
(

1
t

∫ ∞

ln t
u(ey)eydy

)∣∣∣∣pdt

t=ex
=
∫
R

∣∣∣∣exα
(

e−x
∫ ∞

x
u(ey)eydy

)∣∣∣∣pexdx

=
∫
R

∣∣∣∣exαe−xe
x
p

∫ ∞

x
u(ey)eydy

∣∣∣∣pdx

=
∫
R

∣∣∣∣ex(α+ 1
p−1)

∫ ∞

x
u(ey)eydy

∣∣∣∣pdx
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=
∫
R

∣∣∣∣∫ ∞

x
e(x−y)(α+ 1

p−1)ey(α+ 1
p−1)u(ey)eydy

∣∣∣∣pdx

=
∫
R

∣∣∣∣∫ ∞

x
e(x−y)(α+ 1

p−1)ey(α+ 1
p )u(ey)dy

∣∣∣∣pdx

ũ(y):=ey(α+ 1
p )u(ey)

=

∥∥∥∥∫ ∞

x
e(x−y)(α+ 1

p−1)ũ(y)dy
∥∥∥∥p

Lp(R)

.

Furthermore,

‖u‖p
Lp,α (0,+∞)

= ‖tαu‖p
Lp(0,+∞)

=
∫ ∞

0
|tαu(t)|pdt t=ex

=
∫
R
|exαu(ex)|pexdx

=
∫
R
|ex(α+ 1

p )u(ex)|pdx =
∫
R
|ũ(x)|pdx = ‖ũ‖p

Lp(R)
.

Thus, inequality (19) is equivalent to∥∥∥∥∫ ∞

x
e(x−y)(α+ 1

p−1)ũ(y)dy
∥∥∥∥

Lp(R)

≤C‖ũ‖Lp(R). (20)

Now, we show (20). We notice that∫ ∞

x
e(x−y)(α+ 1

p−1)ũ(y)dy = (E ∗ ũ)(x),

where

E(x) =

{
0 if x≥ 0,

e(α+ 1
p−1)x if x < 0.

Next,

‖E‖L1(R) =
∫ 0

−∞
e(α+ 1

p−1)xdx =
1

α + 1
p −1.

Finally, from Young’s convolution inequality we get∥∥∥∥∫ ∞

x
e(x−y)(α+ 1

p−1)ũ(y)dy
∥∥∥∥

Lp(R)

= ‖E ∗ ũ‖Lp(R)

≤ ‖E‖L1(R)‖ũ‖Lp(R) =
1

α + 1
p −1

‖ũ‖Lp(R).

Thus, we have (20), and hence (19).

• We want to show that if L is continuous in Lp,α(0,+∞), then α + 1
p > 1. We prove

it by contradiction. We assume that α + 1
p ≤ 1. We will show that there exists

u ∈ Lp,α(0,+∞) such that the following inequality fails:∥∥∥∥1
t

∫ ∞

t
u(s)ds

∥∥∥∥
Lp,α (0,+∞)

≤C‖u‖Lp,α (0,+∞). (21)
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We take uR(t) = t−(α+ 1
p )χ( 1

R ,R)
(t). Then

‖uR‖p
Lp,α (0,+∞)

=
∫ R

1
R

tα p|uR(t)|pdt =
∫ R

1
R

tα pt−α p−1dt = 2lnR,

and for α + 1
p < 1 we get

‖LuR‖p
Lp,α (0,+∞)

=
∫ ∞

0
tα p|LuR(t)|pdt =

∫ ∞

0
tα p
∣∣∣∣1t
∫ ∞

t
uR(s)ds

∣∣∣∣pdt

=
∫ ∞

0
tα p
∣∣∣∣1t
∫ ∞

t
s−α− 1

p χ( 1
R ,R)

(s)ds
∣∣∣∣pdt

=
∫ 1

R

0
tα p
∣∣∣∣1t
∫ R

1
R

s−α− 1
p ds
∣∣∣∣pdt +

∫ R

1
R

tα p
∣∣∣∣1t
∫ R

t
s−α− 1

p ds
∣∣∣∣pdt

=
∫ 1

R

0
t p(α−1)

∣∣∣∣∫ R

1
R

s−α− 1
p ds
∣∣∣∣pdt +

∫ R

1
R

t p(α−1)
∣∣∣∣∫ R

t
s−α− 1

p ds
∣∣∣∣pdt

=
∫ 1

R

0
t p(α−1)

∣∣∣∣ s−α− 1
p+1

−α− 1
p +1

∣∣∣∣s=R

s= 1
R

∣∣∣∣pdt

+
∫ R

1
R

t p(α−1)
∣∣∣∣ s−α− 1

p+1

−α− 1
p +1

∣∣∣∣s=R

s=t

∣∣∣∣pdt

=
∫ 1

R

0

1
|−α− 1

p +1|p t p(α−1)|R−α− 1
p+1−Rα+ 1

p−1|pdt

+
∫ R

1
R

1
|−α− 1

p +1|p t p(α−1)|R−α− 1
p+1− t−α− 1

p+1|pdt

=
1

|−α− 1
p +1|p |R

−α− 1
p+1−Rα+ 1

p−1|p
∫ 1

R

0
t p(α−1)dt

+
∫ R

1
R

1
|−α− 1

p +1|p t p(α−1)|R−α− 1
p+1− t−α− 1

p+1|pdt

=+∞,

because p(α−1)<−1.
If α + 1

p = 1, then

‖LuR‖p
Lp,α (0,+∞)

=
∫ ∞

0
tα p|LuR(t)|pdt =

∫ ∞

0
tα p
∣∣∣∣1t
∫ ∞

t
uR(s)ds

∣∣∣∣pdt

=
∫ ∞

0
tα p
∣∣∣∣1t
∫ ∞

t
s−α− 1

p χ( 1
R ,R)

(s)ds
∣∣∣∣pdt

=
∫ 1

R

0
tα p
∣∣∣∣1t
∫ R

1
R

s−α− 1
p ds
∣∣∣∣pdt +

∫ R

1
R

tα p
∣∣∣∣1t
∫ R

t
s−α− 1

p ds
∣∣∣∣pdt
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=
∫ 1

R

0
t p(α−1)

∣∣∣∣∫ R

1
R

s−α− 1
p ds
∣∣∣∣pdt +

∫ R

1
R

t p(α−1)
∣∣∣∣∫ R

t
s−α− 1

p ds
∣∣∣∣pdt

=
∫ 1

R

0
t−1
∣∣∣∣∫ R

1
R

s−1ds
∣∣∣∣pdt +

∫ R

1
R

t−1
∣∣∣∣∫ R

t
s−1ds

∣∣∣∣pdt

= (2lnR)p
∫ 1

R

0
t−1dt +

∫ R

1
R

t−1(lnR− ln t)pdt =+∞.

Thus, inequality (21) fails for uR.

2. Case p =+∞.
(i)

• We assume that α < 1, and we want to show that the operator H is continuous in
L∞,α(0,+∞), that is ∥∥∥∥1

t

∫ t

0
u(s)ds

∥∥∥∥
L∞,α (0,+∞)

≤C‖u‖L∞,α (0,+∞). (22)

We observe that for all t > 0∣∣∣∣tα
(

1
t

∫ t

0
u(s)ds

)∣∣∣∣≤ tα−1
∫ t

0
|u(s)|s

α

sα ds

≤ esssup
s>0

|sαu(s)|tα−1
∫ t

0

1
sα ds =

1
1−α

‖sαu(s)‖L∞(0,+∞).

Thus, we have

esssup
t>0

∣∣∣∣tα
(

1
t

∫ t

0
u(s)ds

)∣∣∣∣≤ 1
1−α

‖u(s)‖L∞,α (0,+∞)

and hence we get (22).

• We would like to show that if H is continuous in L∞,α(0,+∞), then α < 1. We prove
it by contradiction. Suppose α ≥ 1. We will show that there exists u ∈ L∞,α(0,+∞)
such that the inequality (22) fails.
We take u(t) = t−α . Then,

‖u‖L∞,α (0,+∞) = esssup
t>0

|tαu(t)|= esssup
t>0

1 = 1

and for α ≥ 1 we have

‖Hu(t)‖L∞,α (0,+∞) = esssup
t>0

∣∣∣∣tα
(

1
t

∫ t

0
u(s)ds

)∣∣∣∣
= esssup

t>0

∣∣∣∣tα−1
∫ t

0
s−αds

∣∣∣∣=+∞.
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(ii) We assume that α > 1, and we want to show that the operator L is continuous in
L∞,α(0,+∞), that is ∥∥∥∥1

t

∫ ∞

t
u(s)ds

∥∥∥∥
L∞,α (0,+∞)

≤C‖u‖L∞,α (0,+∞). (23)

We observe that for all t > 0∣∣∣∣tα
(

1
t

∫ ∞

t
u(s)ds

)∣∣∣∣≤ tα−1
∫ ∞

t
|u(s)|s

α

sα ds

≤ esssup
s>0

|sαu(s)|tα−1
∫ ∞

t

1
sα ds =

1
α−1

‖sαu(s)‖L∞(0,+∞).

Thus, we have

esssup
t>0

∣∣∣∣tα
(

1
t

∫ ∞

t
u(s)ds

)∣∣∣∣≤ 1
1−α

‖u(s)‖L∞,α (0,+∞)

and hence we get (23).

• We would like to show that if L is continuous in L∞,α(0,+∞), then α > 1. We
prove it by contradiction. We assume that α ≤ 1. We will show that there exists
u ∈ L∞,α(0,+∞) such that the following inequality (23) fails.
We take u(t) = t−α . Then,

‖u‖L∞,α (0,+∞) = esssup
t>0

|tαu(t)|= esssup
t>0

1 = 1

and for α ≤ 1 we have

‖Lu(t)‖L∞,α (0,+∞) = esssup
t>0

∣∣∣∣tα
(

1
t

∫ ∞

t
u(s)ds

)∣∣∣∣
= esssup

t>0

∣∣∣∣tα−1
∫ ∞

t
s−αds

∣∣∣∣=+∞.

5.2. IMBEDDING RESULTS

Definition 18. Let Ω⊆ Rn. We denote by D(Ω) the space of all C∞ functions with compact
support in Ω.

Remark 4 (Chapter 1, Section 1.3.2 in [3]). Let Ω be an open subset of Rn. In general,
D(Ω) is not dense in W s,p(Ω).
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Definition 19 (Def. 1.3.2.2 in [3]). Let Ω be an open subset of Rn. For s > 0, we denote by
W s,p

0 (Ω) the closure of D(Ω) in W s,p(Ω).

Theorem 20 (Theorem 3.40 in [12] ). For 0 < α ≤ 1
2 there holds

Hα
0 (0,+∞) = Hα(0,+∞).

Proof. We know that Hα
0 (0,+∞) is the closure of D((0,+∞)) in Hα(0,+∞). Therefore, it

is enough to show thatD((0,+∞)) is a dense subset of Hα(0,+∞) in order to get the desired
result. We will use the following characterization of the dense subspace of Banach space X :

A subset W ⊆ X is dense if and only if {g ∈ X∗ : 〈g,u〉= 0 for all u ∈W}= {0}.

Let F̃ : Hα(0,+∞)→ C be a linear, continuous functional and F̃(φ) = 0 for all
φ ∈ D((0,+∞)). We would like to show that F̃ ≡ 0.
First, we note that

F̃(χ) = 0 if χ ∈ D([0,+∞)) and χ(0) = 0. (24)

Indeed, if χ ∈ D([0,+∞)) and χ(0) = 0, then we define

χε(x) =
{

0 if x ∈ [0,ε],
χ(x− ε) if x > ε.

Then χε is continuous on [0,+∞). Moreover, χε → χ in H1(0,+∞), because∫ ∞

0
|χ ′ε(x)−χ ′(x)|2dx =

∫ ε

0
|χ ′(x)|2dx+

∫ ∞

ε
|χ ′(x− ε)−χ ′(x)|2dx

=
∫ ε

0
|χ ′(x)|2dx+

∫ ∞

0
|χ ′(x)−χ ′(x+ ε)|2dx→ 0 as ε → 0+.

Next, if (χε) ε
2
= η ε

2
∗ χε is a standard mollifier, then (χε) ε

2
→ χ in H1(0,+∞) and

(χε) ε
2
∈ D((0,+∞)). In particular, (χε) ε

2
→ χ in Hα(0,+∞), because from Corollary 2.8.

in [10] we get

‖χε −χ‖Hα (0,+∞)≤‖χε −χ‖1−α
L2(0,+∞)

‖χε −χ‖α
H1(0,+∞).

From the observation that (χε) ε
2
→ χ in Hα(0,+∞) and the fact that F̃ is continuous in

Hα(0,+∞), we get
F̃(χ) = lim

ε→0
F̃((χε) ε

2
) = 0,

so we have (24). We recall that for w ∈ Hα(R) we can write

w(x) = wo(x)+we(x) for x ∈ R,

where
wo(x) =

1
2
[w(x)−w(−x)]
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is the odd part of the function w and

we(x) =
1
2
[w(x)+w(−x)]

is the even part of the function w. Hence, we define F : Hα(R)→ C such that

Fw := F̃we|(0,+∞)
.

Then, we|(0,+∞)
∈ Hα(0,+∞) and F is well defined. We notice that F is a continuous linear

operator. Moreover, we observe that

if φ ∈ D(R) such that φ(0) = 0, then Fφ = 0. (25)

Indeed, Fφ = F̃φe|(0,+∞)
and φe|(0,+∞)

∈ D([0,+∞)) such that φe|(0,+∞)
(0) = 0, because 0 =

φ(0) = φo(0)+φe(0) = 0+φe(0) = φe(0). From (24) we get F̃φe|(0,+∞)
= 0, and hence we

obtain (25).

Thus, it is enough to show that F ≡ 0. To this purpose, let η ∈D(R) and η(0) = 1. Then
for all ψ ∈ D(R) we have

〈F,ψ〉= 〈F,ψ−ηψ(0)〉+ 〈F,ηψ(0)〉= 〈F,ηψ(0)〉.
Thus, for all ψ ∈ D(R) we obtain

〈F,ψ〉= ψ(0)〈F,η〉.
We put a := 〈F,η〉, so for all ψ ∈ D(R)

〈F,ψ〉= aψ(0).

Hence, we can write F := aδ , where δ denotes Dirac delta function. Next

F ∈ H−α(R)⇔ F̂(ξ )(1+ |ξ |2)−α
2 ∈ L2(R).

However, F̂(ξ ) = a. Thus,

F ∈ H−α(R)⇔ a(1+ |ξ |2)−α
2 ∈ L2(R)

⇔ |a|2
∫
R
(1+ |ξ |2)−αdξ <+∞.

We observe that ∫
R
(1+ |ξ |2)−αdξ =+∞

for α ∈ (0, 1
2 ], so we get a = 0. Therefore, for all ψ ∈ D(R) we have 〈F,ψ〉= 0, and hence

F ≡ 0.
From the fact that F ≡ 0, we can deduce that F̃ ≡ 0. Indeed, let ṽ ∈ Hα((0,+∞)). We set

v(x) =
{

ṽ(x) if x > 0,
ṽ(−x) if x < 0.
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We show that v ∈ Hα(R).∫
R

∫
R

|v(x)− v(y)|2
|x− y|1+2α dxdy =

∫ +∞

0

∫ +∞

0

|ṽ(x)− ṽ(y)|2
|x− y|1+2α dxdy

+
∫ +∞

0

∫ 0

−∞

|ṽ(−x)− ṽ(y)|2
|x− y|1+2α dxdy

+
∫ 0

−∞

∫ +∞

0

|ṽ(x)− ṽ(−y)|2
|x− y|1+2α dxdy

+
∫ 0

−∞

∫ 0

−∞

|ṽ(−x)− ṽ(−y)|2
|x− y|1+2α dxdy

=
∫ +∞

0

∫ +∞

0

|ṽ(x)− ṽ(y)|2
|x− y|1+2α dxdy

+
∫ +∞

0

∫ +∞

0

|ṽ(x)− ṽ(y)|2
|x+ y|1+2α dxdy

+
∫ +∞

0

∫ +∞

0

|ṽ(x)− ṽ(y)|2
|x+ y|1+2α dxdy

+
∫ +∞

0

∫ +∞

0

|ṽ(x)− ṽ(y)|2
|x− y|1+2α dxdy

≤ 4
∫ +∞

0

∫ +∞

0

|ṽ(x)− ṽ(y)|2
|x− y|1+2α dxdy,

where in the last inequality we used the fact that |x− y| ≤ |x+ y| for all x,y≥ 0. Moreover,

‖v‖2
L2(R) =

∫ +∞

0
|ṽ(x)|2dx+

∫ 0

−∞
|ṽ(−x)|2dx = 2

∫ +∞

0
|ṽ(x)|2dx = 2‖ṽ‖2

L2(R).

Thus,
‖v‖2

Hα (R) ≤ 4‖ṽ‖2
Hα ((0,+∞)).

Furthermore, from definition of F we obtain

F̃ ṽ = Fv = 0,

because F ≡ 0. To sum up, we have F̃ ṽ = 0 for all ṽ ∈ Hα((0,+∞)). Hence, F̃ ≡ 0.

Remark 5. Let T > 0. Proposition 20 holds also for Ω = (−∞,T ) or Ω = (−∞,0) instead
of Ω = (0,+∞). Hence,

Hα
0 (0,T ) = Hα(0,T ) for 0 < α ≤ 1

2
.

Indeed, let f ∈ Hα(0,T ) and let η ∈ D(R) such that suppη ⊆ [0, 3
5T ] and η ≡ 1 on [0, 2

5T ].
Then, we have

f (t) = f (t)η(t)+ f (t)(1−η)(t).
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Moreover, we observe that f η ∈ Hα(0,+∞) and f (1−η) ∈ Hα(−∞,T ). Thus, there exists
ϕ1 ∈ D((0,+∞)) such that suppϕ1 ⊆ (0, 4

5T ) and ‖ϕ1− f η‖
H

1
2 (0,+∞)

< ε
2 . Furthermore,

there exists ϕ2 ∈D((−∞,T )) such that suppϕ2⊆ (1
5T,T ) and ‖ϕ2− f (1−η)‖

H
1
2 (−∞,T )

< ε
2 .

Hence, ϕ1 +ϕ2 ∈ D((0,T )) and

‖(ϕ1 +ϕ2)− f‖Hα (0,T ) < ε.

It is worth mentioning that the results presented in Theorem 20 and Remark 5 hold for all
1≤ p <+∞ and for any bounded and open subset of Rn, which we present in the following
theorem:

Theorem 21 (Thr. 1.4.2.4 in [3] ). Let Ω be a bounded open subset of Rn with a Lipschitz
boundary; then D(Ω) is dense in W s,p(Ω) for 0 < s≤ 1

p .

Corollary 22 (Chapter 1, Section 1.4.2 in [3]). Under the assumptions of Theorem 21,
W s,p

0 (Ω) is the same space as W s,p(Ω) when 0 < s≤ 1
p .

Theorem 23 (Thr. 1.4.4.4 in [3]). Let 1 ≤ p < +∞. We assume that s ≥ 0 and s = m+σ ,
where m is an integer and σ ∈ [0,1). For all u∈W s,p

0 (0,+∞) such that s− 1
p is not an integer,

the following property holds:

x−s+αu(α) ∈ Lp(0,+∞),

and we have the estimate

‖x−s+αu(α)‖Lp(0,+∞) ≤C(s, p,σ)‖u(m)‖W σ ,p(0,+∞) (26)

for all α ∈ N such that α ≤ s. In particular, for all α ∈ N such that α ≤ s the following
estimate holds:

‖x−s+αu(α)‖Lp(0,+∞) ≤C(s, p,σ)‖u‖W s,p(0,+∞). (27)

Proof. Suppose that we have

‖x−σ v‖Lp(0,+∞) ≤C(s, p,σ)‖v‖W σ ,p(0,+∞) for v ∈ D((0,+∞)). (28)

If u ∈ D((0,+∞)), then (28) with v = u(m) gives (26) for u ∈ D((0,+∞)) and α = m. Fur-
thermore, using Hardy’s inequality we will get (26) for all α ∈ N such that α < m. To this
purpose, we observe that for all α ∈N such that α < m we have−s+α +1+ 1

p < 1, because

−s+α +1+
1
p
< 1⇔ s−α >

1
p
⇔ (m−α)+σ >

1
p
.

The last inequality holds, because if p > 1, then σ ∈ [0,1) and (m−α)+σ ≥ 1+σ ≥ 1 > 1
p .

If p = 1, then s can not be an integer, so in this case σ ∈ (0,1) and (m−α)+σ ≥ 1+σ >
1 = 1

p .
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Due to the above observation, we can use Hardy’s inequality with the operator H. Thus, for
all α ∈ N such that α < m and u ∈ D((0,+∞)) we have

‖x−s+αu(α)‖Lp(0,+∞) =

∥∥∥∥x−s+α+1
(

1
x

∫ x

0
u(α+1)(s)ds

)∥∥∥∥
Lp(0,+∞)

= ‖x−s+α+1H(u(α+1))(x)‖Lp(0,+∞)

≤ 1
|− s+α + 1

p |
‖x−s+α+1u(α+1)‖Lp(0,+∞)

≤ . . .≤
m−1

∏
β=α

1
|− s+β + 1

p |
‖x−s+mu(m)‖Lp(0,+∞)

=C(s, p)‖x−σ u(m)‖Lp(0,+∞).

Hence, we get
‖x−s+αu(α)u‖Lp(0,+∞) ≤C(s, p)‖x−σ u(m)‖Lp(0,+∞) (29)

for all α ∈ N such that α < m and u ∈ D((0,+∞)). Combining (28) with (29), we get

‖x−s+αu(α)‖Lp(0,+∞) ≤C(s, p,σ)‖u(m)‖W σ ,p(0,+∞) for u ∈ D((0,+∞)) (30)

and for all α ∈ N such that α ≤ m.
Now, we are going to show (28).
Remark: If s is an integer, then σ = 0 and ‖x−σ v‖Lp(0,+∞) = ‖v‖Lp(0,+∞). Thus, if s is an
integer, we immediately have (28) with C(s, p,σ)≡ 1.
Hence, we have to derive (28) only in the case when s = m+σ and s is not an integer.

1. Case: σ < 1
p . Let

w(x) =
1
x

∫ x

0
[v(t)− v(x)]dt. (31)

We have the following identity:

v(x) =−w(x)+
∫ ∞

x

w(y)
y

dy, (32)

which we will show below. Indeed,

−w(x)+
∫ ∞

x

w(y)
y

dy =−1
x

∫ x

0
[v(t)− v(x)]dt +

∫ ∞

x

1
y
∫ y

0 [v(t)− v(y)]dt

y
dy

=−1
x

∫ x

0
v(t)dt + v(x)+

∫ ∞

x

1
y2

∫ y

0
v(t)dtdy−

∫ ∞

x

v(y)
y

dy

=−1
x

∫ x

0
v(t)dt + v(x)+

∫ ∞

x

1
y2

∫ x

0
v(t)dtdy

+
∫ ∞

x

1
y2

∫ y

x
v(t)dtdy−

∫ ∞

x

v(y)
y

dy

=−1
x

∫ x

0
v(t)dt + v(x)+

∫ x

0
v(t)dt

∫ ∞

x

1
y2 dy
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+
∫ ∞

x

∫ ∞

t

1
y2 dyv(t)dt−

∫ ∞

x

v(y)
y

dy

=−1
x

∫ x

0
v(t)dt + v(x)+

1
x

∫ x

0
v(t)dt +

∫ ∞

x

v(t)
t

dt−
∫ ∞

x

v(y)
y

dy

= v(x).

Hence, we have (32). We want to show (28). First, we show the following estimate:

‖x−σ w‖Lp(0,+∞) ≤ ‖v‖W σ ,p(0,+∞), (33)

To this purpose, we perform the following calculations:∫ ∞

0
|x−σ w(x)|pdx =

∫ ∞

0
x−σ p

∣∣∣∣1x
∫ x

0
[v(t)− v(x)]dt

∣∣∣∣pdx

≤
∫ ∞

0
x−σ p−1

∫ x

0
|v(t)− v(x)|pdtdx =

∫ ∞

0

∫ x

0

|v(t)− v(x)|p
xσ p+1 dtdx

≤
∫ ∞

0

∫ x

0

|v(t)− v(x)|p
(x− t)σ p+1 dtdx =

∫ ∞

0

∫ x

0

|v(t)− v(x)|p
|x− t|σ p+1 dtdx

≤
∫ ∞

0

∫ ∞

0

|v(t)− v(x)|p
|x− t|σ p+1 dtdx≤ ‖v‖p

W σ ,p(0,+∞)
,

where we used Jensen’s inequality. Thus, we have (33). We notice that if σ < 1
p , then

(−σ + 1) + 1
p > 1. Hence, from Theorem 17 we deduce that operator L is continuous in

Lp,1−σ ((0,+∞)) in the case when σ < 1
p . So, using Hardy’s inequality we get∥∥∥∥x−σ

∫ ∞

x

w(y)
y

dy
∥∥∥∥

Lp(0,+∞)

≤ p
1− pσ

‖x−σ w‖Lp(0,+∞). (34)

Indeed, ∥∥∥∥x−σ
∫ ∞

x

w(y)
y

dy
∥∥∥∥

Lp(0,+∞)

=

∥∥∥∥x−σ+1
(

1
x

∫ ∞

x

w(y)
y

dy
)∥∥∥∥

Lp(0,+∞)

=

∥∥∥∥x−σ+1L
(w(y)

y

)
(x)
∥∥∥∥

Lp(0,+∞)

≤ p
1− pσ

∥∥∥∥x−σ+1 w(x)
x

∥∥∥∥
Lp(0,+∞)

=
p

1− pσ
‖x−σ w‖Lp(0,+∞).

Due to (32), (33) and (34) we have

‖x−σ v‖Lp(0,+∞) ≤ ‖x−σ w(x)‖Lp(0,+∞) +

∥∥∥∥x−σ
∫ ∞

x

w(y)
y

dy
∥∥∥∥

Lp(0,+∞)
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≤ ‖v‖W σ ,p(0,+∞) +
p

1− pσ
‖x−σ w‖Lp(0,+∞)

≤
(

1+
p

1− pσ

)
‖v‖W σ ,p(0,+∞),

provided that σ < 1
p . Thus, we get (28) for σ < 1

p .

2. Case: σ > 1
p . Notice that identity (32) is inconclusive if σ > 1

p . Our aim is to show
(28) by using Hardy’s inequality. For σ > 1

p Theorem 17 states that operator H is continuous
in Lp,1−σ ((0,+∞)). Thus, we have to derive the identity similar to (32), but in this identity
the element H

(
w(y)

y

)
(x) must appear. Notice that

∫ ∞

0

w(y)
y

dy =
∫ ∞

0

1
y
∫ y

0 [v(t)− v(y)]dt

y
dy

=
∫ ∞

0

1
y2

∫ y

0
v(t)dtdy−

∫ ∞

0

v(y)
y

dy

=
∫ ∞

0
v(t)

∫ ∞

t

1
y2 dydt−

∫ ∞

0

v(y)
y

dy = 0.

Hence, from the above observation and the identity (32) we get

v(x) =−w(x)−
∫ x

0

w(y)
y

dy. (35)

From Case 1. we have (33). Thus, it is enough to show the following estimate:∥∥∥∥x−σ
∫ x

0

w(y)
y

dy
∥∥∥∥

Lp(0,+∞)

≤ p
1− pσ

‖x−σ w‖Lp(0,+∞) (36)

in order to get (28). Indeed, using Hardy’s inequality we get∥∥∥∥x−σ
∫ x

0

w(y)
y

dy
∥∥∥∥

Lp(0,+∞)

=

∥∥∥∥x−σ+1
(

1
x

∫ x

0

w(y)
y

dy
)∥∥∥∥

Lp(0,+∞)

=

∥∥∥∥x−σ+1H
(w(y)

y

)
(x)
∥∥∥∥

Lp(0,+∞)

≤ p
1− pσ

∥∥∥∥x−σ+1 w(x)
x

∥∥∥∥
Lp(0,+∞)

=
p

1− pσ
‖x−σ w‖Lp(0,+∞).

Thus, again from (33), (35) and (36) we get

‖x−σ v‖Lp(0,+∞) ≤ ‖x−σ w(x)‖Lp(0,+∞) +

∥∥∥∥x−σ
∫ x

0

w(y)
y

dy
∥∥∥∥

Lp(0,+∞)

≤ ‖v‖W σ ,p(0,+∞) +
p

1− pσ
‖x−σ w‖Lp(0,+∞) ≤

(
1+

p
1− pσ

)
‖v‖W σ ,p(0,+∞).
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This gives us (28) for σ > 1
p .

To sum up, from Case 1. and Case 2. we get (28) for σ �= 1
p . Further, we recall that (28)

implies (30), that is

‖x−s+αu(α)‖Lp(0,+∞) ≤C(s, p,σ)‖u(m)‖W σ ,p(0,+∞)

for u ∈ D((0,+∞)) and for all α ∈ N such that α ≤ s.
Let u ∈W m+σ ,p

0 (0,+∞). Since D((0,+∞)) is dense in W m+σ ,p
0 (0,+∞), there exists a se-

quence {un}n∈N ⊆ D((0,+∞)) such that ‖un− u‖W m+σ ,p(0,+∞) → 0 when n → ∞. We can
rewrite (30) replacing u with ul−uk

‖x−s+α(u(α)
l −u(α)

k )‖Lp(0,+∞) ≤C(s, p,σ)‖u(m)
l −u(m)

k ‖W σ ,p(0,+∞).

Due to the fact that ‖un−u‖W m+σ ,p(0,+∞)→ 0 when n→ ∞, we have ‖u(m)
n −u(m)‖W σ ,p(0,+∞)

→ 0 when n → ∞. Hence, {u(m)
n }n∈N is a Cauchy sequence in W σ ,p

0 (0,+∞). From the
above inequality we can deduce that {x−s+αu(α)

n }n∈N is a Cauchy sequence in Lp(0,+∞),
so it is convergent in Lp(0,+∞) to some v ∈ Lp(0,+∞). On the other hand, u(α)

n → u(α) in
Lp(0,+∞). Hence, v = x−s+αu(α).
Now, we observe that for all ε > 0 there exists N1 ∈ N such that for all n > N1

‖x−s+αu(α)
n − x−s+αu(α)‖Lp(0,+∞) < ε (37)

and there exists N2 ∈ N such that for all n > N2

‖u(m)
n −u(m)‖W σ ,p(0,+∞) < ε. (38)

Moreover, the inequality (30) holds for terms of the sequence {un}n∈N

‖x−s+αu(α)
n ‖Lp(0,+∞) ≤C(s, p,σ)‖u(m)

n ‖W σ ,p(0,+∞). (39)

We set N3 = max{N1,N2} and we choose some n > N3. Thus, from (37), (38) and (39) we
get

‖x−s+αu(α)‖Lp(0,+∞) ≤ ‖x−s+αu(α)− x−s+αu(α)
n ‖Lp(0,+∞) +‖x−s+αu(α)

n ‖Lp(0,+∞)

≤ ε +C(s, p,σ)‖u(m)
n ‖W σ ,p(0,+∞)

≤ ε +C(s, p,σ)
(
‖u(m)

n −u(m)‖W σ ,p(0,+∞) +‖u(m)‖W σ ,p(0,+∞)

)
≤ ε +C(s, p,σ)

(
ε +‖u(m)‖W σ ,p(0,+∞)

)
= ε(C(s, p,σ)+1)+C(s, p,σ)‖u(m)‖W σ ,p(0,+∞)

for all ε > 0. Going to the limit with ε → 0, we obtain

‖x−s+αu(α)‖Lp(0,+∞) ≤C(s, p,σ)‖u(m)‖W σ ,p(0,+∞)

for all u∈W m+σ ,p
0 (0,+∞). This gives us (26) for all u∈W m+σ ,p

0 (0,+∞), provided that s− 1
p

is not an integer. Furthermore, inequality (27) is a consequence of the definition of the norm
‖ · ‖W s,p(0,+∞).
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Lemma 24. Let Ω be a bounded, open subset of Rn with a Lipschitz boundary Γ. Then for
all u ∈W s,p

0 (Ω) such that s− 1
p is not an integer the following property holds:

dist(y,Γ)−s+|α|Dαu ∈ Lp(Ω) (40)

for all |α| ≤ s, and we have the following estimate:

‖dist(y,Γ)−s+|α|Dαu‖Lp(Ω) ≤C(s, p,σ)‖u‖W s,p(Ω). (41)

Proof. Let u ∈D(Ω). We set x ∈ Γ and let V be an open neighbourhood of x in Rn. Without
loss of generality, we may assume that

1. V has a form of a hybercube in some local coordinates {y1, . . . ,yn}

V = {(y1, . . . ,yn) :−a j < y j < a j,1≤ j ≤ n};

2. there exists a Lipschitz function ϕ defined in

V ′ = {(y1, . . . ,yn−1) :−a j < y j < a j,1≤ j ≤ n−1}

and such that
|ϕ(y′)| ≤ an

2
for every y′ = (y1, . . . ,yn−1) ∈V ′,

Ω∩V = {y = (y′,yn) ∈V : yn < ϕ(y′)},
Γ∩V = {y = (y′,yn) ∈V : yn = ϕ(y′)}.

Using a partition of unity, we may assume that supp u⊆V . For y′ ∈V ′ we set

uy′(t) = u(y′,ϕ(y′)− t).

We notice that for almost all y′ ∈V ′ we have uy′ ∈W s,p
0 (R+). Indeed, we have

‖uy′‖p
W s,p(0,+∞)

= ‖uy′‖p
W m,p(0,+∞)

+
∫
R+

∫
R+

|u(m)
y′ (t1)−u(m)

y′ (t2)|p
|t1− t2|n+σ p dt1dt2

= ∑
α≤m

∫
R+

|u(α)
y′ (t)|pdt +

∫
R+

∫
R+

|u(m)
y′ (t1)−u(m)

y′ (t2)|p
|t1− t2|n+σ p dt1dt2

= ∑
α≤m

∫
R+

| ∂ α

∂yn
u(y′,ϕ(y′)− t)|pdt

+
∫
R+

∫
R+

| ∂ m

∂yn
u(y′,ϕ(y′)− t1)− ∂ m

∂yn
u(y′,ϕ(y′)− t2)|p

|t1− t2|n+σ p dt1dt2

= ∑
α≤m

∫
yn<ϕ(y′)

| ∂ α

∂yn
u(y′,yn)|pdyn
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+
∫

yn<ϕ(y′)

∫
zn<ϕ(y′)

| ∂ m

∂yn
u(y′,yn)− ∂ m

∂ zn
u(y′,zn)|p

|yn− zn|n+σ p dyndzn <+∞

for almost every y′ ∈V ′, because

‖u‖p
W s

p(Ω)
= ∑
|β |≤m

∫
Ω∩V

|Dβ u(y)|pdy+ ∑
|β |=m

∫
Ω∩V

∫
Ω∩V

|Dβ u(y)−Dβ u(z)|p
|y− z|n+σ p dydz <+∞.

From Theorem 23 we get t−suy′ ∈ Lp(R+) with

‖t−suy′‖p
Lp(R+)

≤ K p‖uy′‖p
W s

p(R+)
,

where K does not depend on y′. We integrate this inequality in y′. Then, using the substitution
yn = ϕ(y′)− t, we have∫

V ′

∫
R+

t−sp|uy′ |pdtdy′ =
∫

V ′

∫
R+

t−sp|u(y′,ϕ(y′)− t)|pdtdy′

=C1

∫
V ′

∫
yn<ϕ(y′)

[ϕ(y′)− yn]
−sp|u(y′,yn)|pdyndy′

=C1

∫
Ω∩V

(ϕ(y′)− yn)
−sp|u(y)|pdy

and∫
V ′
‖uy′‖p

W s,p(0,+∞)
dy′ =

∫
V ′
‖uy′‖p

W m,p(0,+∞)
dy′+

∫
V ′

∫
R+

∫
R+

|u(m)
y′ (t1)−u(m)

y′ (t2)|p
|t1− t2|n+σ p dt1dt2dy′

=
∫

V ′
∑

α≤m

∫
R+

|u(α)
y′ (t)|pdtdy′

+
∫

V ′

∫
R+

∫
R+

|u(m)
y′ (t1)−u(m)

y′ (t2)|p
|t1− t2|n+σ p dt1dt2dy′

=
∫

V ′
∑

α≤m

∫
R+

| ∂ α

∂yn
u(y′,ϕ(y′)− t)|pdtdy′

+
∫

V ′

∫
R+

∫
R+

| ∂ m

∂yn
u(y′,ϕ(y′)− t1)− ∂ m

∂yn
u(y′,ϕ(y′)− t2)|p

|t1− t2|n+σ p dt1dt2dy′

=C2

∫
V ′

∑
α≤m

∫
yn<ϕ(y′)

| ∂ α

∂yn
u(y′,yn)|pdyndy′

+C3

∫
V ′

∫
yn<ϕ(y′)

∫
zn<ϕ(y′)

| ∂ m

∂yn
u(y′,yn)− ∂ m

∂ zn
u(y′,zn)|p

|yn− zn|n+σ p dyndzndy′

≤C2 ∑
|β |≤m

∫
Ω∩V

|Dβ u(y)|pdy

+C3 ∑
|β |=m

∫
Ω∩V

∫
Ω∩V

|Dβ u(y)−Dβ u(z)|p
|y− z|n+σ p dydz
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≤max{C2,C3}‖u‖p
W s

p(Ω)
,

where C1,C2 and C3 depend only on the boundary of Ω. Therefore, we get

‖(ϕ(y′)− yn)
−su‖Lp(Ω) ≤C‖u‖W s

p(Ω),

where C depends on the boundary of Ω. Furthermore, for x ∈ Γ we have ϕ(x′) = xn, and
using the fact that ϕ is a Lipschitz function with constant M, we obtain

|ϕ(y′)− yn|= |xn− yn +ϕ(y′)−ϕ(x′)| ≤ |xn− yn|+ |ϕ(y′)−ϕ(x′)|
≤ |xn− yn|+M|x′ − y′| ≤ (M+1)|x− y| ≤

√
2(1+M2)|x− y|.

Thus, we obtain

dist(y,Γ) = inf
x∈Γ
|x− y| ≥ |ϕ(y′)− yn|√

2(1+M2)

for y ∈Ω. Due to the above observation, we obtain

‖dist(y,Γ)−su‖Lp(Ω) ≤C‖u‖W s
p(Ω).

Thus, we have (40) for |α|= 0. Performing similar calculations for Dαu, when |α| ≤ s, we
get the desired result.

6. PROOF OF THE MAIN RESULT

Firstly, we need to show the following proposition, which then we use in the proof of
Theorem 6:

Proposition 25. Let T > 0. We denote

H̃1(−T,T ) = { f ∈ H1(−T,T ) : f (t) = 0 for t ∈ (−T,0)}
and

L̃2(−T,T ) = { f ∈ L2(−T,T ) : f (t) = 0 for t ∈ (−T,0)}.
Then, for α ∈ (0,1), the map

f �→ f̃ =
{

f (t) for t ∈ (0,T ),
0 for t ∈ (−T,0)

is an isomorphism from [L2(0,T ), 0H1(0,T )]α onto [L̃2(−T,T ), H̃1(−T,T )]α , i.e.

[L2(0,T ), 0H1(0,T )]α ∼= [L̃2(−T,T ), H̃1(−T,T )]α . (42)
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Proof. 1. In the first step, we show that the map

f �→ f̃ =
{

f (t) for t ∈ (0,T ),
0 for t ∈ (−T,0)

defines an isomorphism from 0H1(0,T ) onto H̃1(−T,T ), i.e.

0H1(0,T )∼= H̃1(−T,T ).

To this purpose, we must show that f �→ f̃ is the bijection between 0H1(0,T ) and H̃1(−T,T ).
We take f ∈ 0H1(0,T ). It is easy to show that f̃ ∈ H1(−T,T ). Indeed, if f ∈ 0H1(0,T ),
then f ∈ L2(0,T ). Thus, f̃ ∈ L2(−T,T ), because ‖ f̃‖L2(−T,T ) = ‖ f‖L2(0,T ). Moreover, we
know that there exists f ′ in a weak sense and f ′ ∈ L2(0,T ) and f (0) = 0. We calculate ( f̃ )′
in a weak sense. Let ϕ ∈C∞

c ((−T,T )). Then∫ T

−T
f̃ (t)ϕ ′(t)dt =

∫ T

0
f (t)ϕ ′(t)dt = f (T )ϕ(T )− f (0)ϕ(0)−

∫ T

0
f ′(t)ϕ(t)dt

=−
∫ T

0
f ′(t)ϕ(t)dt =−

∫ T

−T
f̃ ′(t)ϕ(t)dt,

where we used the fact that f (0) = 0. Hence, ( f̃ )′ = f̃ ′ in a weak sense. Moreover, using the
above observation we get

‖ f̃‖2
H1(−T,T ) =

∫ T

−T
| f̃ (t)|2dt +

∫ T

−T
|( f̃ )′(t)|2dt =

∫ T

−T
| f̃ (t)|2dt +

∫ T

−T
| f̃ ′(t)|2dt

=
∫ T

0
| f (t)|2dt +

∫ T

0
| f ′(t)|2dt = ‖ f‖2

H1(0,T ) <+∞.

Therefore, the map f �→ f̃ is an isometry between 0H1(0,T ) and H̃1(−T,T ), so it is injective.
Furthermore, it is surjective. Indeed, we take arbitrary g ∈ H̃1(−T,T ). Then we know that
g ∈ H1(−T,T ) and g(t) = 0 for t ∈ (−T,0). Hence, g|(0,T ) ∈ H1(0,T ), because

‖g|(0,T )‖H1(0,T ) = ‖g‖H1(−T,T ).

Moreover, from Theorem 5. in Chapter 5.6.2 in [2] we know that if g∈H1(−T,T ), then there
exists a function g∗ ∈C0, 1

2 ([−T,T ]) such that g = g∗ almost everywhere. Hence, g has a con-
tinuous representative g∗, which is defined on [−T,T ]. Further, g∗(t) = 0 for t ∈ (−T,0).
Due to the fact that g∗ is continuous on [−T,T ], we deduce that g∗(0) = 0. Hence, g(0) = 0
in a trace sense. Thus, g|(0,T ) ∈ 0H1(0,T ) and g̃|(0,T ) = g almost everywhere. Therefore,

0H1(0,T )∼= H̃1(−T,T ).

2. Now, we will show that

f �→ f̃ =
{

f (t) for t ∈ (0,T ),
0 for t ∈ (−T,0)
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defines an isomorphism from L2(0,T ) onto L̃2(−T,T ), i.e.

L2(0,T )∼= L̃2(−T,T ).

We can see that f �→ f̃ is a bijection between L2(0,T ) and L̃2(−T,T ). Firstly,

‖ f̃‖L̃2(−T,T ) = ‖ f‖L2(0,T ),

so map f �→ f̃ is an isometry. It is also surjective, beacause for g ∈ L̃2(−T,T ) we can
take g|(0,T ) ∈ L2(0,T ) and g̃|(0,T ) = g almost everywhere. Therefore, f �→ f̃ is an isometric

isomorphism and L2(0,T )∼= L̃2(−T,T ).
3. In the third step, we show that

F(L2(0,T ), 0H1(0,T ))∼= F(L̃2(−T,T ), H̃1(−T,T )), (43)

where F(X0,X1) is defined for an arbitrary interpolation pair (X0,X1) in Definition 2. We
take g ∈ F(L2(0,T ), 0H1(0,T )). From Definition 2, we know that

g : S→ L2(0,T )+ 0H1(0,T )

and

1. g is continuous and bounded in S,

2. g is analytic in S0,

3. g(it) ∈ L2(0,T ) and g(it +1) ∈ 0H1(0,T ) for all t ∈ R,

4. functions t �→ g(it) and t �→ g(it + 1) are bounded and continuous with respect to the
spaces L2(0,T ) and 0H1(0,T ), respectively.

For all z ∈ S, we define
g̃(z) = g̃(z),

where

g̃(z)(t) =
{

g(z)(t) for t ∈ (0,T ),
0 for t ∈ (−T,0).

We want to obtain that
g �→ g̃

is an isometric isomorphism between F(L2(0,T ), 0H1(0,T )) and
F(L̃2(−T,T ), H̃1(−T,T )). For all z ∈ S, we have g(z) = u1,z + u2,z, where u1,z ∈ L2(0,T )
and u2,z ∈ 0H1(0,T ). Hence,

g̃(z) = ũ1,z + ũ2,z,

where ũ1,z ∈ L̃2(−T,T ) and ũ2,z ∈ H̃1(−T,T ). As a result, we get

g̃(z) = ũ1,z + ũ2,z.
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We want to show that g̃ is continuous in S. Let z0 ∈ S. We have

‖g̃(z)− g̃(z0)‖L̃2(−T,T )+H̃1(−T,T )

= inf{‖ũ1,z− ũ1,z0‖L̃2(−T,T ) +‖ũ2,z− ũ2,z0‖H̃1(−T,T ) : g̃(z)− g̃(z0)

= (ũ1,z + ũ2,z)− (ũ1,z0 + ũ2,z0)}
= inf{‖u1,z−u1,z0‖L2(0,T ) +‖u2,z−u2,z0‖0H1(0,T ) : g(z)−g(z0)

= (u1,z +u2,z)− (u1,z0 +u2,z0)}
= ‖g(z)−g(z0)‖L2(0,T )+ 0H1(0,T ).

Since g is continuous in S, we have the following implication:

z→ z0 ⇒‖g(z)−g(z0)‖L2(0,T )+ 0H1(0,T )→ 0.

From ‖g̃(z)− g̃(z0)‖L̃2(−T,T )+H̃1(−T,T ) = ‖g(z)−g(z0)‖L2(0,T )+ 0H1(0,T ), we deduce that

z→ z0 ⇒‖g̃(z)− g̃(z0)‖L̃2(−T,T )+H̃1(−T,T )→ 0.

Therefore, g̃ is continuous in S.

Furthermore, we want to prove that g̃ is bounded in S. Indeed, we have

‖g̃(z)‖L̃2(−T,T )+H̃1(−T,T )

= inf{‖ũ1,z‖L̃2(−T,T ) +‖ũ2,z‖H̃1(−T,T ) : g̃(z) = ũ1,z + ũ2,z}
= inf{‖u1,z‖L2(0,T ) +‖u2,z‖0H1(0,T ) : g(z) = u1,z +u2,z}
= ‖g(z)‖L2(0,T )+ 0H1(0,T ).

We know that g is bounded in S, so we know that there exists M > 0 such that

‖g(z)‖L2(0,T )+ 0H1(0,T ) ≤M for all z ∈ S.

From
‖g̃(z)‖L̃2(−T,T )+H̃1(−T,T ) = ‖g(z)‖L2(0,T )+ 0H1(0,T )

we deduce that ‖g̃(z)‖L̃2(−T,T )+H̃1(−T,T ) ≤M for all z ∈ S. Hence, g̃ is bounded in S.

Now, we check if g̃ is analytic in S0. We take z0 ∈ S0. We know that g is analytic in S0, so
there exists g′(z0), and we have

g′(z0) = lim
h→0

g(z0 +h)−g(z0)

h
(44)

in the norm topology on L2(0,T )+ 0H1(0,T ). A candidate for g̃′(z0) is

g̃′(z0)(t) :=
{

g′(z0)(t) for t ∈ (0,T ),
0 for t ∈ (−T,0].
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We will show that

lim
h→0

∥∥∥∥ g̃(z0 +h)− g̃(z0)

h
− g̃′(z0)

∥∥∥∥
L̃2(−T,T )+H̃1(−T,T )

= 0. (45)

We can see that

g̃(z0 +h)− g̃(z0)

h
− g̃′(z0) =

ũ1,z0+h + ũ2,z0+h− (ũ1,z0 + ũ2,z0)

h
− (ũ′1,z0

+ ũ′2,z0
).

Hence, we obtain∥∥∥∥ g̃(z0 +h)− g̃(z0)

h
− g̃′(z0)

∥∥∥∥
L̃2(−T,T )+H̃1(−T,T )

= inf
{∥∥∥∥ ũ1,z0+h− ũ1,z0

h
− ũ′1,z0

∥∥∥∥
L̃2(−T,T )

+

∥∥∥∥ ũ2,z0+h− ũ2,z0

h
− ũ′2,z0

∥∥∥∥
H̃1(−T,T )

:

g̃(z0 +h)− g̃(z0)

h
− g̃′(z0) =

ũ1,z0+h + ũ2,z0+h− (ũ1,z0 + ũ2,z0)

h
− (ũ′1,z0

+ ũ′2,z0
)

}
= inf

{∥∥∥∥u1,z0+h−u1,z0

h
−u′1,z0

∥∥∥∥
L2(0,T )

+

∥∥∥∥u2,z0+h−u2,z0

h
−u′2,z0

∥∥∥∥
0H1(0,T )

:

g(z0 +h)−g(z0)

h
−g′(z0) =

u1,z0+h +u2,z0+h− (u1,z0 +u2,z0)

h
− (u′1,z0

+u′2,z0
)

}
=

∥∥∥∥g(z0 +h)−g(z0)

h
−g′(z0)

∥∥∥∥
L2(0,T )+0H1(0,T )

.

From (44), we have

lim
h→0

∥∥∥∥g(z0 +h)−g(z0)

h
−g′(z0)

∥∥∥∥
L2(0,T )+0H1(0,T )

= 0,

so from the above calculations we deduce that

lim
h→0

∥∥∥∥ g̃(z0 +h)− g̃(z0)

h
− g̃′(z0)

∥∥∥∥
L̃2(−T,T )+H̃1(−T,T )

= 0.

Hence, we have (45), and thus we obtain that g̃′(z0) = g̃′(z0) for all z0 ∈ S0, so g̃ is analytic
in S0.

Furthermore, we know that g̃(it) ∈ L̃2(−T,T ) because

‖g̃(it)‖L̃2(−T,T ) = ‖g̃(it)‖L̃2(−T,T ) = ‖g(it)‖L2(0,T ).

Moreover, we know that the map t �→ g(it) is bounded with respect to the space L2(0,T ), so
from the equality ‖g̃(it)‖L̃2(−T,T ) = ‖g(it)‖L2(0,T ) we deduce that t �→ g̃(it) is bounded with

respect to the space L̃2(−T,T ). Furthermore, we know that the map t �→ g(it) is continuous
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with respect to the space L2(0,T ). It means that if t → t0, then ‖g(it)− g(it0)‖L2(0,T ) → 0.
We have

‖g̃(it)− g̃(it0)‖L̃2(−T,T ) = ‖g̃(it)− g̃(it0)‖L̃2(−T,T ) = ‖g(it)−g(it0)‖L2(0,T ).

From the above calculations, we obtain the following implication:

t → t0 ⇒‖g̃(it)− g̃(it0)‖L̃2(−T,T )→ 0,

so t �→ g̃(it) is continuous with respect to the space L̃2(−T,T ). In the same way, we can
show that g̃(it +1) ∈ H̃1(−T,T ), because

‖g̃(it +1)‖H̃1(−T,T ) = ‖ ˜g(it +1)‖H̃1(−T,T ) = ‖g(it +1)‖
0H1(0,T ).

Thus, t �→ g̃(it +1) is bounded with respect to the space H̃1(−T,T ), because t �→ g(it +1) is
bounded with respect to the space 0H1(0,T ). Moreover, we know that the map t �→ g(it +1)
is continuous with respect to the space 0H1(0,T ). It means that if t → t0, then ‖g(it + 1)−
g(it0 +1)‖

0H1(0,T )→ 0. We have

‖g̃(it +1)− g̃(it0 +1)‖H̃1(−T,T ) = ‖ ˜g(it +1)− ˜g(it0 +1)‖H̃1(−T,T )

= ‖g(it +1)−g(it0 +1)‖
0H1(0,T ).

From the above calculations, we obtain the following implication:

t → t0 ⇒‖g̃(it +1)− g̃(it0 +1)‖H̃1(−T,T )→ 0,

so t �→ g̃(it +1) is continuous with respect to the space H̃1(−T,T ).

As the result, we get g̃ ∈ F(L̃2(−T,T ), H̃1(−T,T )). Furthermore,

‖g̃‖F(L̃2(−T,T ),H̃1(−T,T )) = max{sup
t∈R
‖g̃(it)‖L̃2(−T,T ),sup

t∈R
‖g̃(1+ it)‖H̃1(−T,T )}

= max{sup
t∈R
‖g̃(it)‖L̃2(−T,T ),sup

t∈R
‖ ˜g(1+ it)‖H̃1(−T,T )}

= max{sup
t∈R
‖g(it)‖L2(0,T ),sup

t∈R
‖g(1+ it)‖

0H1(0,T )}

= ‖g‖F(L2(0,T ), 0H1(0,T )).

Hence, we have (43).
4. Now we are ready to show (42). Take f ∈ [L2(0,T ), 0H1(0,T )]α . We know that f = g(α)
for some g ∈ F(L2(0,T ), 0H1(0,T )). Let f̃ = g̃(α). We will show that

f �→ f̃

is an isometric isomorphism between [L2(0,T ), 0H1(0,T )]α and [L̃2(−T,T ), H̃1(−T,T )]α .
From 3., we know that g̃∈F(L̃2(−T,T ), H̃1(−T,T )), so f̃ ∈ [L̃2(−T,T ), H̃1(−T,T )]α . Fur-
thermore,

‖ f̃‖[L̃2(−T,T ),H̃1(−T,T )]α
= inf{‖g̃‖F(L̃2(−T,T ),H̃1(−T,T )) : g̃(α) = f̃}
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= inf{‖g‖F(L2(0,T ), 0H1(0,T )) : g(α) = f}= ‖ f‖[L2(0,T ), 0H1(0,T )]α .

As the result, we get (42).

Remark 6. Let T > 0. Then L̃2(−T,T ) is a closed subspace of L2(−T,T ).

Proof. Let ( f̃n)n∈N ⊂ L̃2(−T,T ) and ‖ · ‖L2(−T,T )− limn→∞ f̃n = f . Due to the fact that
L2(−T,T ) is complete, we get f ∈ L2(−T,T ). Take ε > 0. There exists Nε > 0 such that for
all n≥ Nε we get

ε > ‖ f̃n− f‖2
L2(−T,T ) =

∫ 0

−T
| f (t)|2dt +

∫ T

0
| f̃n(t)− f (t)|2dt ≥

∫ 0

−T
| f (t)|2dt.

Hence,

0≤
∫ 0

−T
| f (t)|2dt < ε

for all ε > 0. Going to the limit as ε → 0, we obtain∫ 0

−T
| f (t)|2dt = 0.

From the above equality, we deduce that f = 0 almost everywhere in (−T,0) and
f ∈ L̃2(−T,T ). Otherwise, there exists a set A⊂ (−T,0) of Lebesgue measure zero such that
f (t) �= 0 for t ∈A. Hence, | f (t)|> 0 for t ∈A and there exists δ > 0 such that

∫
A | f (t)|2dt > δ .

Then

0 =
∫ 0

−T
| f (t)|2dt =

∫
A
| f (t)|2dt +

∫
(−T,0)\A

| f (t)|2dt > δ ,

which is a contradiction.

Proof of Theorem 6. We divide our proof into two parts.
1. We show that

[L2(0,T ), 0H1(0,T )]α ↪→ 0Hα(0,T ). (46)

Take f ∈ [L2(0,T ), 0H1(0,T )]α . From (42), we can deduce that
f̃ ∈ [L̃2(−T,T ), H̃1(−T,T )]α . Now, we would like to show that

[L̃2(−T,T ), H̃1(−T,T )]α ↪→ [L2(−T,T ),H1(−T,T )]α . (47)

From Definition 2, we have
f̃ = g(α),

where g ∈ F(L̃2(−T,T ), H̃1(−T,T )) i.e.

g : S = {z ∈ C : 0≤ Rez≤ 1} �→ L̃2(−T,T )+ H̃1(−T,T )

and
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1. g is continuous and bounded in S,

2. g is analytic in S0 = {z ∈ C : 0 < Rez < 1},
3. g(it) ∈ L̃2(−T,T ) and g(it +1) ∈ H̃1(−T,T ) for all t ∈ R,

4. functions t �→ g(it) and t �→ g(it + 1) are bounded and continuous with respect to the
spaces L̃2(−T,T ) and H̃1(−T,T ), respectively.

Due to the fact that L̃2(−T,T ) ↪→ L2(−T,T ) and H̃1(−T,T ) ↪→ H1(−T,T ), we can write

g : S = {z ∈ C : 0≤ Rez≤ 1} �→ L2(−T,T )+H1(−T,T )

and

1. g is continuous and bounded in S,

2. g is analytic in S0 = {z ∈ C : 0 < Rez < 1},
3. g(it) ∈ L2(−T,T ) and g(it +1) ∈ H1(−T,T ) for all t ∈ R,

4. functions t �→ g(it) and t �→ g(it + 1) are bounded and continuous with respect to the
spaces L2(−T,T ) and H1(−T,T ), respectively.

Therefore, we get g ∈ F(L2(−T,T ),H1(−T,T )) and f̃ = g(α). So, from Definition 2, we
can deduce that f̃ ∈ [L2(−T,T ),H1(−T,T )]α . In this way, we get an algebraic inclusion

[L̃2(−T,T ), H̃1(−T,T )]α ⊆ [L2(−T,T ),H1(−T,T )]α .

However, we still must show that [L̃2(−T,T ), H̃1(−T,T )]α is continuously embedded in
[L2(−T,T ),H1(−T,T )]α . Indeed,

‖g‖F(L2(−T,T ),H1(−T,T )) = max{sup
t∈R
‖g(it)‖L2(−T,T ),sup

t∈R
‖g(1+ it)‖H1(−T,T )}

≤max{sup
t∈R
‖g(it)‖L̃2(−T,T ),sup

t∈R
‖g(1+ it)‖H̃1(−T,T )}

= ‖g‖F(L̃2(−T,T ),H̃1(−T,T )).

Moreover,

‖ f̃‖[L2(−T,T ),H1(−T,T )]α

= inf{‖g‖F(L2(−T,T ),H1(−T,T )) : g ∈ F(L2(−T,T ),H1(−T,T )), g(α) = f̃}
≤ inf{‖g‖F(L2(−T,T ),H1(−T,T )) : g ∈ F(L̃2(−T,T ), H̃1(−T,T )), g(α) = f}
≤ inf{‖g‖F(L̃2(−T,T ),H̃1(−T,T )) : g ∈ F(L̃2(−T,T ), H̃1(−T,T )), g(α) = f̃}
= ‖ f̃‖[L̃2(−T,T ),H̃1(−T,T )]α

.
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Then we get (47). Furthermore, from Theorem 30 we know that

[L2(−T,T ),H1(−T,T )]α = Hα(−T,T ) (48)

with equivalent norms. Thus,
f̃ ∈ Hα(−T,T ) (49)

and

‖ f̃‖Hα (−T,T ) ≤C‖ f̃‖[L2(−T,T ),H1(−T,T )]α ≤C‖ f̃‖[L̃2(−T,T ),H̃1(−T,T )]α

=C‖ f‖[L2(0,T ), 0H1(0,T )]α .
(50)

Due to the fact that f̃ ∈ Hα(−T,T ), using Definition 3, we have f̃ ∈ L2(−T,T ) and∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy <+∞.

Then we get f ∈ L2(0,T ) and∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|1+2α dxdy =

∫ 0

−T

∫ T

−T

| f̃ (x)|2
|x− y|1+2α dxdy+

∫ T

0

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|1+2α dxdy

=
∫ 0

−T

∫ T

0

| f (x)|2
|x− y|1+2α dxdy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy

+
∫ T

0

∫ 0

−T

| f (y)|2
|x− y|1+2α dxdy = 2

∫ T

0

∫ 0

−T

| f (y)|2
|x− y|1+2α dxdy

+
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy.

We can notice that∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy≤

∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|1+2α dxdy <+∞.

Thus, f ∈ Hα(0,T ) and

‖ f‖2
Hα (0,T ) = ‖ f‖2

L2(0,T ) +
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy

≤ ‖ f̃‖2
L2(−T,T ) +

∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|1+2α dxdy = ‖ f̃‖2

Hα (−T,T ).

Using (50), we obtain
‖ f‖Hα (0,T ) ≤C‖ f‖[L2(0,T ), 0H1(0,T )]α .

Therefore,
[L2(0,T ), 0H1(0,T )]α ↪→ Hα(0,T ). (51)
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We notice that for α �= 1
2 , we have

‖ f‖0Hα (0,T ) = ‖ f‖Hα (0,T ) ≤C‖ f‖[L2(0,T ), 0H1(0,T )]α .

Hence, for α ∈ (0, 1
2) we have (46). Now, we do some calculations in the case when α = 1

2 .

∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy

=
∫ 0

−T

∫ T

−T

| f̃ (x)|2
|x− y|2 dxdy+

∫ T

0

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy

=
∫ 0

−T

∫ T

0

| f (x)|2
|x− y|2 dxdy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy+

∫ T

0

∫ 0

−T

| f (y)|2
|x− y|2 dxdy

= 2
∫ T

0

∫ 0

−T

| f (y)|2
|x− y|2 dxdy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy

= 2
∫ T

0
| f (y)|2

∫ 0

−T
|x− y|−2dxdy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy

= 2
∫ T

0
| f (y)|2

∫ 0

−T
(y− x)−2dxdy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy

= 2
∫ T

0

| f (y)|2
y

dy−2
∫ T

0

| f (y)|2
y+T

dy+
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy.

Therefore, ∫ T

0

| f (y)|2
y

dy≤
∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy+

2
T
‖ f‖2

L2(0,T ) <+∞

because f̃ ∈ H
1
2 (−T,T ) and f ∈ L2(0,T ).

As a result, for α = 1
2 we get

f ∈ H
1
2 (0,T ) and

∫ T

0

| f (y)|2
y

dy <+∞. (52)

Thus, for α = 1
2 we have f ∈ 0H

1
2 (0,T ). Moreover,

‖ f‖2

0H
1
2 (0,T )

= ‖ f‖2

H
1
2 (0,T )

+
∫ T

0

| f (y)|2
y

dy

= ‖ f‖2
L2(0,T ) +

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy+

∫ T

0

| f (y)|2
y

dy

= ‖ f̃‖2
L2(−T,T ) +

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy+

∫ T

0

| f (y)|2
y

dy

≤ ‖ f̃‖2
L2(−T,T ) +

∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy+

2
T
‖ f‖2

L2(0,T )

178



Characterization of the range of the fractional integral operator

= (1+
2
T
)‖ f̃‖2

L2(−T,T ) +
∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy

≤ (1+
2
T
)

(
‖ f̃‖2

L2(−T,T ) +
∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy

)
= (1+

2
T
)‖ f̃‖2

H
1
2 (−T,T )

.

Thus, using (50) again, we have

‖ f‖
0H

1
2 (0,T )

≤C‖ f‖[L2(0,T ), 0H1(0,T )] 1
2

.

Hence, we obtain (46) for α = 1
2 .

It remains to consider the case α ∈ (1
2 ,1). We have to show that if

f ∈ [L2(0,T ), 0H1(0,T )]α for α ∈ (1
2 ,1), then f (0) = 0. Indeed, from Proposition 25 we

know that if f ∈ [L2(0,T ), 0H1(0,T )]α , then f̃ ∈ [L̃2(−T,T ), H̃1(−T,T )]α . Moreover, from
(49) and (50) we have

[L̃2(−T,T ), H̃1(−T,T )]α ↪→ Hα(−T,T ),

and hence f̃ ∈ Hα(−T,T ). From Chapter 1.4.4 in [3], we know that

Hα(−T,T ) ↪→C0,α− 1
2 ([−T,T ]) for α ∈

(1
2
,1
)
.

Hence, if f̃ ∈Hα(−T,T ), then there exists a function f̃ ∗ ∈C0,α− 1
2 ([−T,T ]) such that f̃ = f̃ ∗

almost everywhere. Hence, function f̃ has a continuous representative f̃ ∗, which is defined
on [−T,T ]. Furthermore, f̃ ∗(t) = 0 for t ∈ (−T,0). Since f̃ ∗ is continuous on [−T,T ], we
get f̃ ∗(0) = 0. Hence, f̃ (0) = 0 in a trace sense and f = f̃|(0,T ) , so we deduce that f (0) = 0.
Therefore, (51) implies that

[L2(0,T ), 0H1(0,T )]α ↪→ 0Hα(0,T )

for α ∈ (1
2 ,1). Thus, we get (51) for α ∈ (1

2 ,1). In our previous considerations, we proved
that (51) holds for α ∈ (0, 1

2 ]. Hence, we get (51) for all α ∈ (0,1), and it finishes this part
of the proof.
2. We will show that

0Hα(0,T ) ↪→ [L2(0,T ), 0H1(0,T )]α . (53)

Take f ∈ 0Hα(0,T ), and define

f̃ (t) =
{

f (t) for t ∈ (0,T ),
0 for t ∈ (−T,0).

• First we show that f̃ ∈ Hα(−T,T ). Notice that 0Hα(0,T ) is a subspace of Hα(0,T ).
Thus, f ∈ Hα(0,T ). From Definition 3, we deduce that

f ∈ L2(0,T ) and
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy <+∞. (54)
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Therefore, f̃ ∈ L2(−T,T ), because ‖ f̃‖L2(−T,T ) = ‖ f‖L2(0,T ). In order to show that
f̃ ∈ Hα(−T,T ), it remains to verify if∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|1+2α dxdy <+∞. (55)

First, we show (55) for α = 1
2 . Using the calculations from the first part of the proof,

we obtain∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy

= 2
∫ T

0

| f (y)|2
y

dy−2
∫ T

0

| f (y)|2
y+T

dy+
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy

≤ 2
∫ T

0

| f (y)|2
y

dy+
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|2 dxdy≤ 2‖ f‖2

0H
1
2 (0,T )

<+∞

because f ∈ 0H
1
2 (0,T ). Thus, we get (55) for α = 1

2 , and hence f̃ ∈ H
1
2 (−T,T ).

Moreover, we get the following estimate:

‖ f̃‖2

H
1
2 (−T,T )

= ‖ f̃‖2
L2(−T,T ) +

∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy

= ‖ f‖2
L2(0,T ) +

∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|2 dxdy

≤ ‖ f‖2
L2(0,T ) +2‖ f‖2

0H
1
2 (0,T )

≤ 3‖ f‖2

0H
1
2 (0,T )

.

Thus, we can write
‖ f̃‖

H
1
2 (−T,T )

≤
√

3‖ f‖
0H

1
2 (0,T )

. (56)

Now, we show (55) for α ∈ (0,1), but α �= 1
2 . Using the similar calculations as in the

case when α = 1
2 , we get∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|1+2α dxdy≤ 2

∫ T

0

| f (y)|2
y2α dy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy.

Again, the second integral is finite due to the (54). We use Lemma 24, in order to show
that

∫ T
0
| f (y)|2

y2α dy <+∞. We know that f ∈ 0Hα(0,T ), so f ∈ Hα(0,T ) for α ∈ (0, 1
2)

and f ∈ {u ∈ Hα(0,T ) : u(0) = 0} for α ∈ (1
2 ,1). From Theorem 20, we know that

Hα
0 (0,T ) = Hα(0,T ) for α ∈ (0, 1

2). Thus, we can use Lemma 24, and we get∫ T

0

| f (y)|2
y2α dy≤

∫ T

0

| f (y)|2
[dist(y,{0,T})]2α dy≤C(s, p,σ)‖ f‖2

Hα (0,T ) (57)

for α ∈ (0, 1
2). Moreover, for α ∈ (1

2 ,1) we define

F(t) =
{

f (t) if t ∈ (0,T ),
f (2T − t) if t ∈ (T,2T ).
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We have F ∈ Hα(0,2T ), because

‖F‖2
Hα (0,2T ) = ‖F‖2

L2(0,2T ) +
∫ 2T

0

∫ 2T

0

|F(x)−F(y)|2
|x− y|1+2α dxdy

=
∫ T

0
| f (x)|2dx+

∫ 2T

T
| f (2T − x)|2dx+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy

+
∫ T

0

∫ 2T

T

| f (2T − x)− f (y)|2
|x− y|1+2α dxdy

+
∫ 2T

T

∫ T

0

| f (x)− f (2T − y)|2
|x− y|1+2α dxdy

+
∫ 2T

T

∫ 2T

T

| f (2T − x)− f (2T − y)|2
|x− y|1+2α dxdy = 2

∫ T

0
| f (x)|2dx

+
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|2T − x− y|1+2α dxdy

+
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x−2T + y|1+2α dxdy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy

≤ 2‖ f‖2
L2(0,T ) +4

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy≤ 4‖ f‖2

Hα (0,T ),

where we used the fact that |2T − x− y| ≥ |x− y| and |x− 2T + y| ≥ |x− y| for all
x,y ∈ (0,T ). Furthermore, F(0) = F(2T ) = f (0) = 0. Hence, F ∈ Hα

0 (0,2T ) for
α ∈ (1

2 ,1). Therefore, we can use Lemma 24 for function F , and we get

∫ T

0

| f (y)|2
y2α dy≤

∫ 2T

0

|F(y)|2
y2α dy≤

∫ 2T

0

|F(y)|2
[dist(y,{0,2T})]2α dy

≤C(s, p,σ)‖F‖2
Hα (0,2T ) ≤C(s, p,σ)‖ f‖2

Hα (0,T )

(58)

for α ∈ (1
2 ,1). Thus, from (57) and (58) we obtain

∫ T

0

| f (y)|2
y2α dy≤C(s, p,σ)‖ f‖2

Hα (0,T )

for α ∈ (0, 1
2)∪ (1

2 ,1). Hence, we get (55) for α ∈ (0,1), but α �= 1
2 , and then

f̃ ∈ Hα(−T,T ) for α ∈ (0, 1
2)∪ (1

2 ,1). Moreover, from Lemma 24 we obtain the
following estimate:

‖ f̃‖2
Hα (−T,T ) = ‖ f̃‖2

L2(−T,T ) +
∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|1+2α dxdy

= ‖ f‖2
L2(0,T ) +

∫ T

−T

∫ T

−T

| f̃ (x)− f̃ (y)|2
|x− y|1+2α dxdy

≤ ‖ f‖2
L2(0,T ) +2

∫ T

0

| f (y)|2
y2α dy+

∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy
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≤ ‖ f‖2
L2(0,T ) +2C(s, p,σ)‖ f‖2

Hα (0,T ) +
∫ T

0

∫ T

0

| f (x)− f (y)|2
|x− y|1+2α dxdy

= (1+2C(s, p,σ))‖ f‖2
Hα (0,T ) = (1+2C(s, p,σ))‖ f‖2

0Hα (0,T )

for α ∈ (0, 1
2)∪ (1

2 ,1). Therefore, from the above calculations and from (56) we have

‖ f̃‖Hα (−T,T ) ≤C‖ f‖0Hα (0,T ) (59)

for α ∈ (0,1).

• From Theorem 30 we get

Hα(−T,T ) = [L2(−T,T ),H1(−T,T )]α

with equivalence of the respective norms. Therefore, we have
f̃ ∈ [L2(−T,T ),H1(−T,T )]α , and we obtain the following estimate:

‖ f̃‖[L2(−T,T ),H1(−T,T )]α ≤C‖ f̃‖Hα (−T,T ). (60)

We recall that the right translation semigroup (Gr(t))t≥0 is defined in Definition 13. It
follows from Proposition 14, that A = − d

dx is the infinitesimal generator of the right
translation semigroup (Gr(t))t≥0 , which is defined on the space L2(−T,T ). Moreover,
from Proposition 14 we know that D(A) = H1(−T,T ). Therefore, from Theorem 15
we get that if

f̃ ∈ [L2(−T,T ),H1(−T,T )]α = [H1(−T,T ),L2(−T,T )]1−α ,

then
t−

1
2−α(Gr(t) f̃ − f̃ ) ∈ L2(0,∞,L2(−T,T )).

Furthermore, from Theorem 15 we obtain the estimate(
‖ f̃‖2

L2(−T,T ) +
∫ ∞

0
t2(− 1

2−α)‖Gr(t) f̃ − f̃‖2
L2(−T,T )dt

) 1
2

≤C‖ f̃‖[L2(−T,T ),H1(−T,T )]α .

(61)
Further, from Definition 13, we obtain

t−
1
2−α(Gr(t) f̃ (x)− f̃ (x)) = 0

for x ∈ (−T,0) and t ≥ 0. Hence, we have

t−
1
2−α(Gr(t) f̃ − f̃ ) ∈ L2(0,∞, L̃2(−T,T )). (62)

We define a new family of operators (G̃r(t))t≥0 such that for all t ≥ 0

G̃r(t) : L̃2(−T,T )→ L̃2(−T,T )

and
G̃r(t)h̃ := Gr(t)h̃,
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where h̃∈ L̃2(−T,T ). We want to use Theorem 15 for X = H̃1(−T,T ),Y = L̃2(−T,T )
and for (G̃r(t))t≥0. To this purpose, we must verify if (G̃r(t))t≥0 satisfies (10) i.e., if it
is a continuous semigroup.

Let h̃ ∈ L̃2(−T,T ). We have
1.

(G̃r(0)h̃)(x) =
{

h̃(x) if x >−T,
0 if x <−T,

but we always take x ∈ (−T,T ), so (G̃r(0)h̃)(x) = h̃(x) for x ∈ (−T,T ). Hence,
G̃r(0) = I.
2. Let t,s≥ 0. We get

(G̃r(t)G̃r(s)h̃)(x) =
{

(G̃r(s)h̃)(x− t) if x− t >−T,
0 if x− t <−T

=

{
h̃(x− t− s) if x− t− s >−T,
0 if x− t− s <−T

= (G̃r(t + s)h̃)(x).

3. We know that for all t ≥ 0 Gr(t)∈B(L2(−T,T ),L2(−T,T )). We want to show that
G̃r(t) ∈ B(L̃2(−T,T ), L̃2(−T,T )). Let t ≥ 0. We can easy see that for h̃ ∈ L̃2(−T,T )
we have

(G̃r(t)h̃)(x) =
{

h(x− t) if 0 < x− t < T,
0 if x− t < 0,

so G̃r(t)h̃ ∈ L̃2(−T,T ). Further,

‖G̃r(t)‖B(L̃2(−T,T ),L̃2(−T,T ))

= sup{‖G̃r(t)h̃‖L2(−T,T ) : h̃ ∈ L̃2(−T,T ), ‖h̃‖L2(−T,T ) ≤ 1}
= sup{‖Gr(t)h̃‖L2(−T,T ) : h̃ ∈ L̃2(−T,T ), ‖h̃‖L2(−T,T ) ≤ 1}
≤ sup{‖Gr(t)h‖L2(−T,T ) : h ∈ L2(−T,T ), ‖h‖L2(−T,T ) ≤ 1}
= ‖Gr(t)‖B(L2(−T,T ),L2(−T,T )),

so we have G̃r(t) ∈ B(L̃2(−T,T ), L̃2(−T,T )).
4. We know that

∀h ∈ L2(−T,T ), ‖Gr(t)h−h‖L2(−T,T )→ 0 as t ↓ 0.

We would like to show that

∀h̃ ∈ L̃2(−T,T ), ‖G̃r(t)h̃− h̃‖L2(−T,T )→ 0 as t ↓ 0. (63)

We take h̃ ∈ L̃2(−T,T ) and let tn → 0 as n→+∞. Then we have

‖G̃r(tn)h̃− h̃‖L2(−T,T ) = ‖Gr(tn)h̃− h̃‖L2(−T,T )→ 0 as n→+∞.

Hence, we get (63). Moreover, from 1.−4. we deduce that (G̃r(t))t≥0 satisfies (10).
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• Now, we would like to verify if (G̃r(t))t≥0 satisfies (11). By Ã we denote the infinites-
imal generator of the semigroup (G̃r(t))t≥0. From Definition 9 we have

Ãh̃ := lim
t↓0

G̃r(t)h̃− h̃
t

∈ L̃2(−T,T ) for h̃ ∈ D(Ã),

where

D(Ã) =
{

h̃ ∈ L̃2(−T,T ) : lim
t↓0

G̃r(t)h̃− h̃
t

exists in L̃2(−T,T )
}
.

So Ã : D(Ã)→ L̃2(−T,T ). Further, reasoning in exactly the same way as in the proof
of Proposition 14 (see Proposition 33 in Appendix), we get

Ãh̃ :=−h̃′

with domain:

D(Ã) = {h̃ ∈ L̃2(−T,T ) : h̃ absolutely continuous, and h̃′ ∈ L̃2(−T,T )}= H̃1(−T,T ).

Hence, (G̃r(t))t≥0 satisfies (11).

Due to the observation that (G̃r(t))t≥0 satisfies (10) and (11), we can use Theorem 15
with the semigroup (G̃r(t))t≥0. Moreover, from (62) we get

t−
1
2−α(G̃r(t) f̃ − f̃ ) ∈ L2(0,∞; L̃2(−T,T )).

Thus, from Theorem 15 we obtain that for α ∈ (0,1)

f̃ ∈ [H̃1(−T,T ), L̃2(−T,T )]1−α = [L̃2(−T,T ), H̃1(−T,T )]α

and

‖ f̃‖[L̃2(−T,T ),H̃1(−T,T )]α
≤C

(
‖ f̃‖2

L̃2(−T,T )
+
∫ ∞

0
t2(− 1

2−α)‖G̃r(t) f̃ − f̃‖2
L̃2(−T,T )

dt
) 1

2

.

(64)
However, we observe that(

‖ f̃‖2
L̃2(−T,T )

+
∫ ∞

0
t2(− 1

2−α)‖G̃r(t) f̃ − f̃‖2
L̃2(−T,T )

dt
) 1

2

=

(
‖ f̃‖2

L2(−T,T ) +
∫ ∞

0
t2(− 1

2−α)‖Gr(t) f̃ − f̃‖2
L2(−T,T )dt

) 1
2

.

Hence, from above equality and from (61) and (64), we get

‖ f̃‖[L̃2(−T,T ),H̃1(−T,T )]α
≤C‖ f̃‖[L2(−T,T ),H1(−T,T )]α . (65)
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Using Theorem 25, we get

f ∈ [L2(0,T ), 0H1(0,T )]α

and we have
‖ f‖[L2(0,T ), 0H1(0,T )]α = ‖ f̃‖[L̃2(−T,T ),H̃1(−T,T )]α

. (66)

Thus, from (59), (60), (65) and (66), we get

‖ f‖[L2(0,T ), 0H1(0,T )]α ≤C‖ f‖0Hα (0,T ). (67)

Hence, we have (53).

7. APPENDIX

Definition 26 (Young’s convolution inequality). Suppose that 1 ≤ p ≤ q ≤ ∞ and 1
q = 1

r +
1
p−1. Then for any functions f ∈ Lp(Rn) and g∈ Lr(Rn), the function f ∗g is defined almost
everywhere (everywhere if q = ∞), belongs to Lq(Rn) and f ∗ g = g ∗ f almost everywhere
and

‖ f ∗g‖Lq(Rn) ≤ ‖ f‖Lp(Rn)‖g‖Lr(Rn).

Definition 27 (Def. 3.1. in [7]). Let I ⊂ R be an interval. A function u : I → R is said to be
absolutely continuous on I if for every ε > 0 there exists δ > 0 such that

l

∑
k=1
|u(bk)−u(ak)| ≤ ε

for every finite number of nonoverlapping intervals (ak,bk),k = 1, . . . , l, with [ak,bk]⊂ I and

l

∑
k=1
|bk−ak| ≤ δ .

The space of all absolutely continuous functions u : I → R is denoted by AC(I).

Theorem 28 (Thr. 3.30 in [7]). Let I ⊂ R be an interval. A function u : I → R belongs to
ACloc(I) if and only if
(i) u is continuous in I,
(ii) u is differentiable L1− a.e. in I, and u′ belongs to L1

loc(I),
(iii) the fundamental theorem of calculus is valid; that is, for all x,x0 ∈ I,

u(x) = u(x0)+
∫ x

x0

u′(t)dt.
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Example 7.1 (Example 1.8. in [10]). For 0 < θ < 1, 1≤ p < ∞ we have

(Lp(Rn),W 1,p(Rn))θ ,p =W θ ,p(Rn)

with equivalence of the respective norms.

Definition 29 (Chapter 1, Section 7.1 in [9]). For s ∈ R, we define

Hs(Rn) = {v : v ∈ S′(Rn),(1+ |y|2) s
2 v̂ ∈ L2(Rn)},

and provide it with the norm

‖v‖Hs(Rn) = ‖(1+ |y|2)
s
2 v̂‖L2(Rn),

which makes it a Hilbert space.

Theorem 30 (Chapter 9, Section 9.1 in [9]). For s ∈ R

Hs(Ω) = [L2(Ω),Hm(Ω)]θ , θm = m− s, m integer, 0 < θ < 1. (68)

Theorem 31 (Thr. 9.1. in [9]). Assume that Ω is an open and bounded set in Rn with smooth
boundary. Then Hs(Ω) coincides (algebraically) with the space of restrictions to Ω of the
elements of Hs(Rn).

Theorem 32 (Thr. 9.2. in [9]). The norm of Hs(Ω) defined by (68) is equivalent to the norm

‖u‖Hs(Ω) = in f‖U‖Hs(Rn), U ∈ Hs(Rn), U = u a.e. on Ω.

Proposition 33. The generator of the semigroup (G̃r(t))t≥0 on the space X := L̃2(−T,T ) is
given by

Ã f :=− f ′

with the domain

D(Ã) = { f ∈ L̃2(−T,T ) : f absolutely continuous and f ′ ∈ L̃2(−T,T )}.

Proof. Let B̃ : D(B̃)→ L̃2(−T,T ) be the infinitesimal generator of the semigroup (G̃r(t))t≥0.
We want to show that B̃ = Ã.
1. In the first step, we will show that B̃ ⊂ Ã. Take f̃ ∈ D(B̃). From the above observation,
we know that

B̃ f̃ = lim
t↓0

G̃r(t) f̃ − f̃
t

∈ L̃2(−T,T ). (69)

Let c,d ∈ (−T,T ). We have L2(−T,T ) ↪→ L2(c,d) ↪→ L1(c,d), and hence∣∣∣∣∫ d

c

G̃r(t) f̃ (x)− f̃ (x)
t

dx−
∫ d

c
B̃ f̃ (x)dx

∣∣∣∣≤ ∫ d

c

∣∣∣∣G̃r(t) f̃ (x)− f̃ (x)
t

− B̃ f̃ (x)
∣∣∣∣dx

=

∥∥∥∥G̃r(t) f̃ − f̃
t

− B̃ f̃
∥∥∥∥

L1(c,d)
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≤C
∥∥∥∥G̃r(t) f̃ − f̃

t
− B̃ f̃

∥∥∥∥
L2(−T,T )

.

From (69), we know that the right hand side of the above inequality converges to 0 as t ↓ 0.
Thus, we have ∫ d

c

G̃r(t) f̃ (x)− f̃ (x)
t

dx t→0+→
∫ d

c
B̃ f̃ (x)dx. (70)

We have t→ 0+, so we can assume that t is so small that c−t >−T . Due to this observation,
we can write ∫ d

c

G̃r(t) f̃ (x)− f̃ (x)
t

dx =
1
t

∫ d

c
G̃r(t) f̃ (x)dx− 1

t

∫ d

c
f̃ (x)dx

=
1
t

∫ d−t

c−t
f̃ (x)dx− 1

t

∫ d

c
f̃ (x)dx

=−1
t

∫ d

d−t
f̃ (x)dx+

1
t

∫ c

c−t
f̃ (x)dx.

Using the Lebesgue Differentiation Theorem, we get

−1
t

∫ d

d−t
f̃ (x)dx+

1
t

∫ c

c−t
f̃ (x)dx t→0+→ − f̃ (d)+ f̃ (c) for a.e. c,d ∈ (−T,T ). (71)

From (70) and (71), we have

f̃ (d) = f̃ (c)+
∫ d

c
(−B̃ f̃ )(x)dx for a.e. c,d ∈ (−T,T ).

We set c0 ∈ (a,b) such that

f̃ (d) = f̃ (c0)+
∫ d

c0

(−B̃ f̃ )(x)dx for a.e. d ∈ (−T,T ).

Let
≈
f (d) := f̃ (c0)+

∫ d

c0

(−B̃ f̃ )(x)dx for all d ∈ (−T,T ).

Then, we have
≈
f = f̃ a.e. in (−T,T ) and

≈
f (c0) = f̃ (c0). Thus,

≈
f (d) :=

≈
f (c0)+

∫ d

c0

(−B̃
≈
f )(x)dx for all d ∈ (−T,T ).

If we take d1,d2 ∈ (−T,T ), then we have

≈
f (d1) =

≈
f (c0)+

∫ d1

c0

(−B̃
≈
f )(x)dx

and
≈
f (d2) =

≈
f (c0)+

∫ d2

c0

(−B̃
≈
f )(x)dx.
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Hence, we get

≈
f (d2) =

≈
f (d1)+

∫ d2

d1

(−B̃
≈
f )(x)dx for all d1,d2 ∈ (−T,T ).

Thus, according to the Theorem 28,
≈
f is an absolutely continuous function with derivative

(almost everywhere) equal to −B̃
≈
f ∈ L̃2(−T,T ). Thus, we have

D(B̃)⊂ D(Ã) and Ã
∣∣
D(B̃) = B̃. (72)

2. In the second step, we will deduce that B̃ = Ã. To this purpose, we make some obser-
vations:
(i) The semigroup (G̃r(t))t≥0 is a contractive semigroup, so there is

‖G̃r(t)‖L2(−T,T ) ≤ 1

for all t ≥ 0. Hence, from Theorem 12 we obtain that 1 ∈ ρ(B̃).
(ii) We will also show below that 1 ∈ ρ(Ã). We know that

1 ∈ ρ(Ã)⇔ exists the bounded operator (Ã− I)−1 on L̃2(−T,T ).

We can see that for f̃ ∈ L̃2(−T,T )

(Ã− I)−1 f̃ = ũ⇔ f̃ = (Ã− I)ũ⇔ f̃ =−ũ′ − ũ,

where ũ ∈ D(Ã). Thus, 1 ∈ ρ(Ã) if and only if for all f̃ ∈ L̃2(−T,T ) there exists a unique
solution of the following equation:

f̃ =−ũ′ − ũ, (73)

and this solution belongs to D(Ã). It is easy to see that the solution of (73) is given by

ũ(t) =−
∫ t

−T
es−t f̃ (s)ds.

Thus, we have

((Ã− I)−1 f̃ )(t) =−
∫ t

−T
es−t f̃ (s)ds =−

∫ t

−T
e−(t−s) f̃ (s)ds =−( f̃ ∗ e−s)(t),

and then from Young’s convolution inequality we get

‖(Ã− I)−1 f̃‖L2(−T,T ) = ‖ f̃ ∗ e−s‖L2(−T,T ) ≤ ‖e−s‖L1(−T,T )‖ f̃‖L2(−T,T )

= |e−b− e−a|‖ f̃‖L2(−T,T ).

Hence, 1 ∈ ρ(Ã).
(iii) Due to (72) and observation (i), we obtain

(I− Ã)(D(B̃)) = (I− B̃)(D(B̃)) = L̃2(−T,T ).
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Moreover, using observation (ii), we have

D(Ã) = (I− Ã)−1(L̃2(−T,T )).

Hence, we get
D(Ã) = (I− Ã)−1(I− Ã)(D(B̃)) = D(B̃),

and then Ã = B̃.
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1. INTRODUCTION

In this paper, we find a special solution to the space-fractional, one-phase, one-dimensional
Stefan problem

⎧⎨⎩ ut− ∂
∂xDαu = 0 in {(x, t) : 0 < x < s(t), 0 < t < ∞},

u(0, t) = c1, u(t,s(t)) = 0 for t ∈ (0,∞),
ṡ(t) =−(Dαu)(s(t), t) for t ∈ (0,∞),

(1)

where we assume that α ∈ (0,1), s(0) = 0 and c1 > 0. This is a non-linear problem with
a pair of unknowns (u,s), where u may be regarded as temperature of a medium or density
of a transported substance, while s : R+→R denotes a moving boundary of the domain. We
consider one-phase problem, hence we assume that u(x, t) = 0 for x > s(t).

By Dα we denote the fractional Caputo derivative with respect to the spatial variable given
by

Dαu(x, t) =
1

Γ(1−α)

∫ x

0
(x− p)−αux(p, t)d p. (2)
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The problem (1) may be derived from the balance law, assuming the following non-local
form of the flux:

q(x, t) =
{ −Dαu(x, t) in {(x, t) : 0 < x < s(t), 0 < t < ∞}

0 in {(x, t) : s(t)< x < ∞, 0 < t < ∞}. (3)

The idea of representing the diffusive flux in terms of space-fractional Caputo derivative was
proposed in paper [5], where the model of infiltration of water into heterogeneous soils was
considered. Motivation to study problem (1) comes from [6], where the author considered
one-phase, one-dimensional Stefan problem with diffusive flux given by (3). It is worth
mentioning that the existence of a unique classical solution to the problem⎧⎪⎪⎨⎪⎪⎩

ut− ∂
∂xDαu = 0 in {(x, t) : 0 < x < s(t), 0 < t < T},

ux(0, t) = 0, u(t,s(t)) = 0 for t ∈ (0,T ),
u(x,0) = u0 on (0,b),
ṡ(t) =−(Dαu)(s(t), t) for t ∈ (0,T ),

(4)

where T,b > 0, s(0) = b, was proved in [3]. The aim of this article is to obtain the exact
formula for a solution in the case when b= 0 and with a positive, constant Dirichlet condition
on the left boundary, i.e. problem (1). The results of this article come from the author’s PhD
Thesis. It must also be mentioned that the self-similar solution to space-fractional Stefan
problem was obtained independently in the recent paper [2]. However, here we give an
independent proof of this result.

Before we proceed to the construction of the self-similar solution, let us recall some pre-
liminary facts from fractional-calculus, which will be used in the paper. We begin with the
definition of the fractional integral and the Riemann-Liouville fractional derivative.

Definition 1. Let L > 0, α > 0. For f ∈ L1(0,L) we introduce the fractional integral Iα by
the formula

Iα f (x) =
1

Γ(α)

∫ x

0
(x− p)α−1 f (p)d p. (5)

If α ∈ (0,1) and f is regular enough (for example, f is absolutely continuous), we may define
the Riemann-Liouville fractional derivative as

∂ α f (x) =
∂
∂x

I1−α f (x) =
1

Γ(1−α)

∂
∂x

∫ x

0
(x− p)−α f (p)d p.

Here, Γ(·) denotes the Gamma function given by the formula

Γ(z) =
∫ ∞

0
e−ttz−1dt.

It follows from (2) that Dα f = I1−α f ′. Thus, we may represent the diffusive operator
∂
∂xDα equivalently as

∂
∂x

Dαu =
∂
∂x

I1−αux = ∂ αux. (6)

Let us now recall the superposition property for fractional integrals.
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Proposition 2. [4, Theorem 2.5.] Let α,β ,L > 0, f ∈ L1(0,L). Then,

Iα Iβ f = Iα+β f .

One of the fundamental issues in solving the fractional differential equations with the
Caputo derivative is to investigate whether the operator Iα acts like an operator inverse to
Dα . Here we cite Lemma 2.21 from [1], however, instead of L∞ we assume Lp regularity.

Proposition 3. [1, Lemma 2.21] Let L > 0, α ∈ (0,1). Then, we have

(Dα Iα f )(x) = f (x) for f ∈ Lp(0,L), p >
1
α
,

(IαDα f )(x) = f (x)− f (0) for f ∈ AC[0,L].

Now, we present an analogous result in the case of the fractional Riemann-Liouville deriva-
tive.

Proposition 4. [4, Theorem 2.4] Let α ∈ (0,1) and L > 0. Then,

∂ α Iα f = f for f ∈ L1(0,L).

If f ∈ L1(0,L) is such that ∂ α f ∈ L1(0,L), we have

Iα∂ α f (x) = f (x)− xα−1

Γ(α)
I1−α f (0), where I1−α f (0) := lim

x→0
I1−α f (x).

We note that the limit is well defined, because by the assumption I1−α f is absolutely contin-
uous. In particular, if f additionally belongs to Lp(0,L) for p > 1

1−α , then

Iα∂ α f = f .

Now, we present how the fractional operators act on polynomial functions.

Proposition 5. Let α ∈ (0,1), β >−1. Then,

Iαxβ =
Γ(β +1)

Γ(α +β +1)
xβ+α

and for β > 0

∂ αxβ = Dαxβ =
Γ(β +1)

Γ(β +1−α)
xβ−α .

We finish this section with a result concerning a sign of the operator ∂
∂xDα f in the

extremum point of f . Here, we replace the regularity assumptions which appear in [3,
Lemma 7] with more natural ones. Next, we will make use of this lemma in order to show
that our self-similar solution is non-negative.
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Lemma 6. Let α ∈ (0,1), f : [0,L]→R be an absolutely continuous function such that there
exists γ > 1

2 such that f ′ ∈ Hα+γ(ε,L) for every ε > 0. Then, ∂
∂xDα f is continuous on (0,L]

and

1. if f attains its local maximum at x0 ∈ (0,L) which is a global maximum on [0,x0], then
( ∂

∂xDα f )(x0)≤ 0. Furthermore, if f is not constant on [0,x0], then ( ∂
∂xDα f )(x0)< 0;

2. if f attains its local minimum at x0 ∈ (0,L) which is a global minimum on [0,x0], then
( ∂

∂xDα f )(x0)≥ 0. Furthermore, if f is not constant on [0,x0], then ( ∂
∂xDα f )(x0)> 0.

Proof. Let us begin with the proof of continuity of ∂
∂xDα f . To this end, we take x1,x∈ (0,L).

Let us assume that x1 < x. The case x < x1 can be shown analogously. We note that for every
0 < ε < y < L,

Γ(1−α)(
∂
∂x

Dα f )(y) =
∂
∂y

∫ ε

0
(y− p)−α f ′(p)d p+

∂
∂y

∫ y

ε
(y− p)−α f ′(p)d p

=−α
∫ ε

0
(y− p)−α−1 f ′(p)d p+

∂
∂y

∫ y

ε
(y− p)−α [ f ′(p)− f ′(ε)]d p

+ f ′(ε)(y− ε)−α .

Let us denote ∂ α
ε g(x) := 1

Γ(1−α)
∂
∂x
∫ x

ε (x− p)−αg(p)d p. Then, taking arbitrary ε ∈ (0,x1),
we obtain

Γ(1−α)

∣∣∣∣ ∂
∂x

Dα f (x)− ∂
∂x

Dα f (x1)

∣∣∣∣≤ α
∫ ε

0
[(x1− p)−α−1− (x− p)−α−1]

∣∣ f ′(p)
∣∣d p

+Γ(1−α)
∣∣∂ α

ε [ f ′ − f ′(ε)](x)−∂ α
ε [ f ′ − f ′(ε)](x1)

∣∣
+
∣∣ f ′(ε)∣∣ [(x1− ε)−α − (x− ε)−α ].

The first term tends to zero as x→ x1, because convergence under the integral is uniform. By
[3, Corollary 1], we have

I1−α
ε [ f ′ − f ′(ε)] =

1
Γ(1−α)

∫ x

ε
(x− p)−α [ f ′ − f ′(ε)]d p ∈ 0H1+γ(ε,L),

where the space 0H1+γ is defined in [3, Corollary 1]. Hence, we obtain that ∂ α
ε [ f ′ − f ′(ε)] ∈

Hγ(ε,L) ↪→C[ε,L]. Thus, continuity of ∂
∂xDα f on (0,L) is proved. We will prove only the

part of the claim concerning maximum, because the proof of the second part is analogous.
We define g(x) = f (x0)− f (x). Then g is non negative on [0,x0], g′(x0) = 0 and ∂

∂xDαg =

− ∂
∂xDα f . We note that by the Sobolev embedding g ∈C0,β [ε,L] for β = α + γ− 1

2 > α and
for every ε > 0. Hence, for every 0 < ε < x≤ x0 we may estimate as follows:∣∣g′(x)∣∣= ∣∣g′(x)−g′(x0)

∣∣≤ c |x− x0|β (7)

and
g(x)≤

∫ x0

x

∣∣g′(p)
∣∣d p≤ c

β +1
|x− x0|β+1 . (8)
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Using these estimates we may differentiate under the integral sign as follows

(
∂
∂x

Dαg)(x0) =
1

Γ(1−α)

(
∂
∂x

∫ x

0
(x− p)−αg′(p)d p

)
(x0)

=
1

Γ(1−α)
lim

p→x−0
(x0− p)−αg′(p)− α

Γ(1−α)

∫ x0

0
(x0− p)−α−1g′(p)d p

and the limit is equal to zero by the estimate (7). Integrating by parts we obtain further

(
∂
∂x

Dαg)(x0) =− α
Γ(1−α)

∫ x0

0
(x0− p)−α−1g′(p)d p =− α

Γ(1−α)
lim

p→x−0
(x0− p)−α−1g(p)

+
α

Γ(1−α)
x−α−1

0 g(0)+
α(α +1)
Γ(1−α)

∫ x0

0
(x0− p)−α−2g(p)d p.

By (8), the limit equals zero, hence we arrive at

(
∂
∂x

Dαg)(x0) =
α

Γ(1−α)
x−α−1

0 g(0)+
α(α +1)
Γ(1−α)

∫ x0

0
(x0− p)−α−2g(p)d p

and

(
∂
∂x

Dαg)(x0)≥ 0, which implies (
∂
∂x

Dα f )(x0)≤ 0.

Furthermore, from the formula above we obtain that if f is not a constant function on [0,x0],
then ( ∂

∂xDα f )(x0)< 0.

2. SIMILARITY VARIABLE

We would like to find a scale-invariant solution to problem (1). In order to find the appro-
priate scaling, we introduce

uλ (x, t) := λ cu(λ ax,λ bt) for a,b,c,λ > 0.

Let us perform the calculations

ut(λ ax,λ bt) = λ−b−cuλ
t (x, t) and ux(λ ax,λ bt) = λ−a−cuλ

x (x, t).

Next, we have

Γ(1−α)
∂
∂x

Dαuλ (x, t)=
∂
∂x

∫ x

0
(x− p)−αuλ

x (p, t)d p=
∂
∂x

∫ x

0
(x− p)−αλ a+cux(λ a p,λ bt)d p.

Substituting λ a p = w, we obtain

Γ(1−α)∂ αuλ
x (x, t) = λ c ∂

∂x

∫ λ ax

0
(x−wλ−a)−αux(w,λ bt)dw
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= λ aα+c ∂
∂x

∫ λ ax

0
(λ ax−w)−αux(w,λ bt)dw

= λ a(α+1)+c(
∂
∂x

Dαu)(λ ax,λ bt).

Hence, if u satisfies (1)1, then

0 = λ−cλ−buλ
t (x, t)−λ−cλ−a(α+1) ∂

∂x
Dαuλ (x, t).

We are looking for a self-similar solution, so if we take c = 0 and suppose that u ≡ uλ , we
arrive at

b = a(α +1).

Motivated by the above calculation, we introduce the similarity variable ξ = xt−
1

α+1 and we
define

F(ξ ) = F(xt−
1

α+1 ) := u(x, t).

Let us rewrite the equation (1)1 in terms of function F . Then

ut(x, t) =− 1
α +1

xt−
1

α+1−1F ′(ξ ), ux(x, t) = t−
1

α+1 F ′(ξ ) (9)

and

Γ(1−α)
∂
∂x

Dαu(x, t) = t−
1

α+1
∂
∂x

∫ x

0
(x− p)−αF ′(pt−

1
α+1 )d p

=
∂
∂x

∫ xt−
1

1+α

0
(x−wt

1
α+1 )−αF ′(w)dw

= t−
α

α+1
∂
∂x

∫ xt−
1

α+1

0
(xt−

1
α+1 −w)−αF ′(w)dw

= Γ(1−α)t−1 ∂
∂ξ

DαF(ξ ). (10)

Hence, if u satisfies (1)1, recalling the identity (6) we obtain

− 1
1+α

ξ F ′(ξ )−∂ αF ′(ξ ) = 0.

3. A SELF-SIMILAR SOLUTION

In this section, we will proceed as follows: at first, we will solve the auxiliary problem
for function F with boundary conditions F(0) = c1, I1−αF ′(0) = c2 on the interval [0,R],
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where R > 0, c2 < 0 are arbitrary constants and c1 comes from (1)2. Then, we will propose
the formula for the family {sR}R>0 and we will choose the constant c2 = c2(R) such that
the pair uR(x, t) = FR(xt−

1
1+α ) and sR is a solution to (1)1, (1)3 . Finally, we will choose

R = c0 > 0 such that F(c0) = 0, which will guarantee that the pair (uc0 ,sc0) satisfies the
whole system (1).

Lemma 7. Let us consider the problem{
∂ αF ′(ξ ) =− ξ

α+1F ′(ξ ) for 0 < ξ < R,
F(0) = c1, I1−αF ′(0) = c2,

(11)

where c1 > 0, R > 0, c2 < 0 are fixed constants and I1−αF ′(0) := limξ→0 I1−αF ′(ξ ). Then,
there exists exactly one solution to (11) which belongs to

XR,c1,c2 := {v ∈C1((0,R]) : ξ 1−αv′ ∈C([0,R]), v(0) = c1, I1−αv′(0) = c2}.
Furthermore, the solution is given by the formula

F(ξ ) = c1 +
c2

Γ(α +1)

[
ξ α +Γ(α +1)ξ α

∞

∑
k=1

(−ξ 1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)(k+1))

]
, (12)

where the series is uniformly convergent on [0,R]. Finally, if we define

u(x, t) := F(xt−
1

1+α ), (13)

then u(0, t) = c1 and u satisfies (1)1 on {(x, t) : 0 < x < Rt
1

α+1 ,0 < t < ∞}.

Proof. At first, we will rewrite (11) in the integral form. Let us assume that F belonging
to XR,c1,c2 satisfies (11). We apply Iα to both sides of (11)1. Since F ′ ∈ L1(0,R), from
identity (11) we obtain that ∂ αF ′ ∈ L1(0,R) as well. Hence, we may apply Proposition 4 to
obtain

F ′(ξ ) = c2
ξ α−1

Γ(α)
− 1

α +1
Iα(ξ F ′)(ξ ). (14)

Integrating this identity and applying Proposition 2, we arrive at

F(ξ ) = c1 +
ξ α

Γ(α +1)
c2− 1

α +1
Iα I(ξ F ′)(ξ ).

We note that ∫ ξ

0
pF ′(p)d p = ξ F(ξ )−

∫ ξ

0
F(p)d p, i.e. I(ξ F ′) = ξ F− IF.

Denoting by E the identity operator, we get

F(ξ ) = c1 +
ξ α

Γ(α +1)
c2 +

1
α +1

Iα(I−ξ E)F(ξ ).
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The above identity may be written in the following form:

F(ξ ) = G(ξ )+KF(ξ ), (15)

where

G(ξ ) = c1 +
ξ α

Γ(α +1)
c2, KF(ξ ) =

1
α +1

Iα(I−ξ E)F(ξ ).

Let us find a solution to (15). Applying the operator K to both sides of (15), we obtain

KF(ξ ) = KG(ξ )+K2F(ξ ),

and thus
F(ξ ) = G(ξ )+KG(ξ )+K2F(ξ ).

Applying subsequent powers of K to (15), we arrive at

F(ξ ) =
n

∑
k=0

KkG(ξ )+Kn+1F(ξ ) for any n ∈ N. (16)

We note that if F belongs to C([0,R]), then KnF → 0 uniformly on [0,R]. Indeed, using
Proposition 5, we may calculate that

Iα(I +ξ E)ξ β =
Γ(β +3)

Γ(β +α +2)(β +1)
ξ β+α+1.

Hence, we have

|KnF(ξ )| ≤ ‖F‖C([0,R])
1

(α +1)n (I
α(I +ξ E))n1 = ‖F‖C([0,R])

ξ n(α+1)∏n−1
k=0(k(α +1)+3)

(1+α)nΓ(n(α +1)+1)

= ‖F‖C([0,R])
ξ n(α+1)∏n−1

k=0(k+
3

α+1)

Γ(n(α +1)+1)
≤ 2‖F‖C([0,R])Rn(α+1) Γ(n+1)

Γ(n+1+αn)
n→∞−→ 0.

Thus, we may pass to the limit in (16) to obtain

F(ξ ) =
∞

∑
k=0

KkG(ξ ). (17)

We will show that the series is uniformly convergent on [0,R] and we will find its sum. First,
we note that for any n ∈ N\{0} we have (I−ξ E)n1 = 0. Thus

F(ξ ) = c1 +
c2

Γ(α +1)

∞

∑
k=0

1
(1+α)k [I

α(I−ξ E)]kξ α .

Furthermore, from Proposition 5 we infer that

Iα(I−ξ E)ξ β =− βΓ(β +1)
Γ(β +α +2)

ξ β+α+1. (18)
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We will show by induction that for every k ∈ N, k ≥ 1 we have

1
Γ(1+α)

[Iα(I−ξ E)]kξ α = (−ξ 1+α)kξ α ∏k
i=1(iα + i−1)

Γ((α +1)(k+1))
. (19)

For k = 1, applying (18) with β = α , we arrive at

1
Γ(1+α)

Iα(I−ξ E)ξ α =−ξ 2α+1 α
Γ(2α +2)

,

which is (19) with k = 1. Let us assume that for a fixed k ≥ 1 identity (19) is satisfied. Then

1
Γ(1+α)

[Iα(I−ξ E)]k+1ξ α =
∏k

i=1(iα + i−1)
Γ((α +1)(k+1))

Iα(I−ξ E)[(−ξ 1+α)kξ α ].

Using (18) with β = (1+α)k+α , we get

1
Γ(1+α)

[Iα(I−ξ E)]k+1ξ α =
k

∏
i=1

(iα + i−1) · (−1)k+1[(1+α)k+α]

Γ((1+α)k+2α +2)
ξ (1+α)k+2α+1

= (−ξ 1+α)k+1ξ α ∏k+1
i=1 (iα + i−1)

Γ((α +1)(k+2))
.

Hence, by the principle of mathematical induction, we obtain (19). From (19), it follows that
the function F defined by (17) is given by the formula

F(ξ ) = c1 +
c2

Γ(α +1)

[
ξ α +Γ(α +1)ξ α

∞

∑
k=1

(−ξ 1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)(k+1))

]
.

We will show that the series above is uniformly absolutely convergent. Indeed, let us denote

ak =
R(1+α)k+α

(1+α)k
∏k

i=1(iα + i−1)
Γ((α +1)(k+1))

.

Then,

ak+1

ak
= Rα+1 k(α +1)+α

1+α
Γ((α +1)k+α +1)

Γ((α +1)k+2(α +1))

≤ Rα+1

α +1
Γ((α +1)k+α +2)

Γ((α +1)k+α +2+α)
=

Rα+1

α +1
B(α,(α +1)k+α +2)

Γ(α)
−→ 0 as k→ ∞.

Thus, by the Weierstrass and d’Alembert criteria the series in (12) is uniformly absolutely
convergent. Now we will check whether F defined by (12) actually satisfies (15). Let us
calculate KF . We note that

1
α +1

Iα(I−ξ E)c1 = 0,

hence

KF(ξ )=
1

α +1
Iα(I−ξ E)

[
c2

Γ(α +1)

[
ξ α +Γ(α +1)ξ α

∞

∑
k=1

(−ξ 1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)(k+1))

]]
.
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Integrating the series term by term and using (18), we obtain

1
α +1

Iα(I−ξ E)F(ξ )

=− α
α +1

c2
ξ 2α+1

Γ(2(α +1))

− 1
(α +1)

c2

∞

∑
k=1

( −1
1+α

)k ξ (1+α)k+2α+1

Γ((1+α)(k+2))
[(1+α)k+α]

k

∏
i=1

(iα + i−1)

=− α
α +1

c2
ξ 2α+1

Γ(2(α +1))
+ c2ξ α

∞

∑
k=2

(−ξ 1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((1+α)(k+1))

= c2ξ α
∞

∑
k=1

(−ξ 1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((1+α)(k+1))
.

Hence, we have verified that the function F given by (12) satisfies (15). Furthermore, the
solution to (15) belongs to XR,c1,c2 . Indeed, F given by (12) is continuous as a uniform limit
of a sequence of continuous functions. By (15), we obtain F(0) = c1 and

(I1−αF ′)(0) = c2 +
1

1+α
(Dα Iα(I−ξ E)F)(0) = c2 +

1
1+α

((I−ξ E)F)(0) = c2.

In order to show ξ 1−αF ′ ∈C([0,R]), we differentiate the series in (12) term by term.

d
dξ

[
ξ α

∞

∑
k=1

(−ξ 1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)(k+1))

]
= ξ α−1

∞

∑
k=1

(−ξ 1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)(k+1)+1)
.

(20)
We will show that this series is absolutely uniformly convergent on [0,R]. Let us denote

bk =

(
R1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)(k+1)+1)
.

Then,

bk+1

bk
=

R1+α

1+α
· [(k+1)(α +1)−1]Γ((α +1)(k+1)+1)

Γ((α +1)(k+2)+1)

≤ R1+α

1+α
· Γ((α +1)(k+1)+2)

Γ((α +1)(k+2)+1)
=

R1+αB(α,(α +1)(k+1)+2)
(1+α)Γ(α)

−→ 0, as k→ ∞.

Hence, the series in (20) is uniformly absolutely convergent, which leads to ξ 1−αF ′ ∈
C([0,R]). Now we will show that F satisfies (11). Since F ′ ∈ L1(0,R), we may apply Dα to
both sides of (15) to obtain

DαF(ξ ) = c2 +
1

1+α
IF(ξ )− ξ

1+α
F(ξ ),
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where we made use of Proposition 3 and Proposition 5. The right-hand-side is absolutely
continuous, hence by differentiating the identity above we arrive at

∂
∂x

DαF(ξ ) =− ξ
1+α

F ′(ξ ).

The identities (9) and (10) finish the proof.

Lemma 8. Let F be a solution to the problem (11) given in Lemma 7. Then, for every R > 0
there holds F ′ < 0 on (0,R). Furthermore, function u defined by (13) satisfies ut > 0, ux < 0
on {(x, t) : 0 < x < Rt

1
α+1 ,0 < t < ∞}.

Proof. Since c2 < 0, by (12) we have

F ′(ξ )→−∞ as ξ → 0.

Indeed, the derivative of the series in (12) vanishes as ξ → 0 and c2ξ α−1 →−∞ as ξ → 0.
Hence, F is decreasing in the neighborhood of zero. We note that F satisfies the assumptions
of Lemma 6, because by Lemma 7 it is absolutely continuous and smooth away from the
origin. Let us assume that F admits a local minimum at point ξ0 > 0. Then, F ′(ξ0) = 0 and,
since F is not constant, by Lemma 6 we obtain ( ∂

∂xDαF)(ξ0)< 0. It leads to a contradiction
with (11). Thus, F ′ < 0. The final part follows from (9).

In the next lemma, we obtain the family (uR,sR)R>0 of solutions to (1)1 and (1)3.

Lemma 9. For every c1 > 0 and every R > 0, the functions

sR(t) = Rt
1

1+α , (21)

uR(x, t)= c1+
c̃2

Γ(α +1)

[
xαt−

α
α+1 +Γ(α +1)xαt−

α
α+1

∞

∑
k=1

( −x1+α

(1+α)t

)k ∏k
i=1(iα + i−1)

Γ((α +1)(k+1))

]
(22)

where
c̃2 =− R

(1+α)

[
1+∑∞

k=1

(
−R1+α

1+α

)k ∏k
i=1(iα+i−1)

Γ((α+1)k+1)

] (23)

satisfy the equation (1)3. Moreover, uR is a solution to (1)1 with s(t)= sR(t) and uR(0, t) = c1.

Proof. We note that uR(x, t) = F(xt−
1

1+α ) where F is the solution to (11) with c2 equal to
c̃2 whenever c̃2 given by (23) is well defined and negative. It is enough to show that the
denominator in the definition of c̃2 is positive. To this end, let us recall the formula for the
function F given by (12). By Lemma 8, for any c2 < 0 there holds F ′ < 0. Thus, we have
also DαF < 0. Applying Proposition 5, we deduce that for any c2 < 0

DαF(R) = c2

[
1+

∞

∑
k=1

(−R1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)k+1)

]
.
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This implies that

1+
∞

∑
k=1

(−R1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)k+1)
> 0.

Hence, for every R > 0 the constant c̃2 given by (23) is well defined and negative. By
Lemma 7, the function uR fulfills (1)1 with s(t) = sR(t) and uR(0, t) = c1. Moreover,

t−
α

α+1 I1−αF ′(ξ ) = (I1−αuR
x )(x, t),

hence, I1−αF ′(0) = c̃2 implies (I1−αuR
x )(0, t) = c̃2t−

α
α+1 . Now we will show that (uR,sR)R>0

given by (21) - (23) satisfy (1)3. Let us calculate DαuR(x, t) for uR given by (22). From
Proposition 5, we get

DαuR(x, t) = c̃2t−
α

α+1 + t−
α

α+1 c̃2

∞

∑
k=1

( −x1+α

(1+α)t

)k ∏k
i=1(iα + i−1)

Γ((α +1)k+1)
.

Hence, for sR given by (21) we have

t
α

α+1 DαuR(sR(t), t) = c̃2 + c̃2

∞

∑
k=1

(−R1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)k+1)
.

Applying (23), we obtain

−DαuR(sR(t), t) = t−
α

α+1
R

1+α
=

d
dt

sR(t).

Hence, the functions sR and uR defined by (21) and (22) satisfy (1)3, which completes the
proof.

It remains to choose R > 0 such that the pair (uR,sR) given by Lemma (9) satisfies
uR(sR(t), t) = 0.

Theorem 10. For every c1 > 0, there exists c0 > 0 such that the pair (u,s) := (uc0 ,sc0),
where (uc0 ,sc0) come from Lemma 9 with R = c0, satisfies the system (1). Furthermore,

∀x > 0 u(x, ·),ut(x, ·),ux(x, ·) ∈C([s−1(x),∞)), (24)

∀t > 0 u(·, t),ut(·, t) ∈C([0,s(t)]), ux(·, t) ∈C((0,s(t)]) (25)

and

∀t > 0
∂
∂x

Dαu(·, t) ∈C([0,s(t)]). (26)

Finally, u > 0, ut > 0, ux < 0 on {(x, t) : 0 < x < s(t), 0 < t < ∞}.
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Proof. Let us show that there exists c0 > 0 such that the pair (uR,sR) given by Lemma 9 with
R = c0 satisfies uR(sR(t), t) = 0. For ξ = xt−

1
1+α , the function uR defined in (22) is given by

uR(x, t) = F(ξ ) = c1 + c̃2g(ξ ),

where

g(ξ ) =

[
ξ α

Γ(α +1)
+ξ α

∞

∑
k=1

(−ξ 1+α

1+α

)k ∏k
i=1(iα + i−1)

Γ((α +1)(k+1))

]
.

We note that g(0) = 0, and since c̃2 < 0, by Lemma 8 we infer that g is increasing. Applying
Lemma 6, we obtain that ∂

∂xDαg≤ 0. Recalling that c̃2 is given by (23), we arrive at

F(ξ ) = c1− Rg(ξ )
(α +1)Dαg(R)

.

We would like to find R > 0 such that F(R) = 0. We note that

F(R) = c1− Rg(R)
(α +1)Dαg(R)

.

Since the denominator is positive, it is enough to show that there exists a positive zero of the
function

h(R) := c1(α +1)Dαg(R)−Rg(R).

We note that since Dαg(0) = 1 we have h(0) = c1(α +1)> 0. On the other hand, since g is
absolutely continuous and g(0) = 0, we may write g(R) = IαDαg(R). Applying ∂

∂xDαg≤ 0,
we may estimate as follows:

IαDαg(R) =
1

Γ(α)

∫ R

0
(R− p)α−1Dαg(p)d p≥ Dαg(R)

Γ(α)

∫ R

0
(R− p)α−1d p =

Dαg(R)Rα

Γ(α +1)
.

Hence,

h(R) = c1(1+α)Dαg(R)−RIαDαg(R)≤ c1(1+α)Dαg(R)−RDαg(R)
Rα

Γ(α +1)
.

Recalling that Dαg > 0, we arrive at h(R)→−∞ as R→ ∞. Hence, since h is continuous,
we may apply the Darboux property to deduce that there exists c0 > 0 such that h(c0) = 0,
which implies F(c0) = 0. Moreover, for s(t) = c0t

1
1+α there holds u(s(t), t) = u(c0t

1
1+α , t) =

F(c0) = 0. The regularity results (24) and (25) immediately follow from (9) and regularity of
F established in Lemma 7. To show (26), we note that since F satisfies (11), the continuity
of ξ F(ξ ) implies ∂

∂xDαF ∈C([0,R]). This, together with identity (10), leads to (26).
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Abstract: We consider equations describing motion of an incompressible heat-conducting fluid in
a bounded domain. We assume the slip boundary conditions for velocity and the Dirichlet condition for
temperature. First, we prove the existence of a strong-weak stationary solution which is unique under
some assumptions about the smallness of the data. Next, we show the existence of a global strong-weak
solution to nonstationary problem which is close to the stationary solution. This way the stability of the
strong-weak stationary solution in a set of strong-weak solutions to the nonstationary problem is proved.
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1. INTRODUCTION

The paper is concerned with equations describing incompressible viscous heat-conducting
motions in a bounded domain Ω ⊂R3. We study the problem which consists of the Navier–
Stokes equations coupled with the heat equation. The system is complemented with the
slip boundary conditions for velocity and the Dirichlet condition for temperature. Thus, the
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problem under consideration is as follows

vt−νΔv+ν ·∇v+∇p = α(θ) f in Ω ×R+,

divv = 0 in Ω ×R+,

θt−κΔθ + v ·∇θ = ν |D(v)|2 in Ω ×R+,

ν n̄D(v)τ̄α = 0, α = 1,2, on S×R+,

v · n̄ = 0, θ = θ̄ on S×R+,

v|t=0 = v0, θ |t=0 = θ0 in Ω ,

(1)

where S = ∂Ω , v = v(x, t) = (v1(x, t),v2(x, t),v3(x, t)) is the velocity of the fluid,
x = (x1,x2,x3) are the Cartesian coordinates, p = p(x, t) is the pressure, θ = θ(x, t) is the
temperature of the fluid, f = f (x, t) = ( f1(x, t), f2(x, t), f3(x, t)) is the external force field,
α ∈ C1(R), θ̄ = θ̄(x) is a positive function defined on Ω (we assume that θ̄ ∈ H1(Ω)),
ν > 0 is the viscosity coefficient, κ is the constant conductivity coefficient. Moreover,
D(v) = {vix j +v jxi}i, j=1,2,3 = ∇v+∇vT denotes the double velocity deformation tensor, n̄ is
the unit outward vector normal to S and τ̄α , α = 1,2 are tangent vectors to S such that n̄, τ̄α ,
α = 1,2 form an orthonormal basis in R3.

Our aim is to prove the existence of a global strong-weak solution to problem (1) which is
close to a strong-weak stationary solution. By a stationary solution to (1) we mean functions
w = w(x) = (w1(x),w2(x),w3(x)), q = q(x) and ϑ = ϑ(x) which satisfy the problem

−νΔw+w ·∇w+∇q = α(ϑ)g in Ω ,

divw = 0 in Ω ,

−κΔϑ +w ·∇ϑ = ν |D(w)|2 in Ω ,

ν n̄D(w)τ̄α = 0, α = 1,2, on S,
w · n̄ = 0, ϑ = θ̄ on S.

(2)

In order to obtain the main result of the paper we introduce the functions u = v−w,
η = p−q, χ = θ −ϑ , h = f −g which are solutions to the problem

ut−νΔu+u ·∇u+∇η
=−w ·∇u−u ·∇w+[α(χ +ϑ)−α(ϑ)] f +α(ϑ)h in Ω ×R+,

divu = 0 in Ω ×R+,

χt−κΔ+u ·∇χ
=−w ·∇χ−u ·∇ϑ +ν |D(u)|2 +2ν D(u) : D(w) in Ω ×R+,

ν n̄D(u)τ̄α = 0, α = 1,2, on S×R+,

u · n̄ = 0, χ = 0 on S×R+,

u|t=0 = v0−w, χ|t=0 = θ0−ϑ .

(3)

In Section 2 we present notation and the main results of the paper which are formulated as
Theorems 3, 8. Theorems 3–4 are concerned with the unique solvability of problem (2), and
Theorems 7–8 contain results concerning stability of a stationary solution and the existence
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of a strong-weak solution to problem (1). In Section 3 we formulate auxiliary results used
in the proofs of the main theorems. In Section 4 we present the proofs of Theorems 3
and 4 concerning the uniqueness of a stationary solution. Finally, in Section 5 we derive
a differential inequality for a solution to problem (3). Next, using this inequality together
with the Galerkin approximations we prove Theorems 7 and 8.

To prove Theorems 3, 8 we use methods similar to those from paper [15] in which equa-
tions (1)1,2,3 complemented with the Dirichlet boundary condition both for velocity and tem-
perature were considered. The temperature on the boundary was assumed constant. The
applied methods are adapted to the case of the slip boundary conditions for velocity and
temperature which is not constant on the boundary.

In [13] and [14] system (1)1,2,3 is also studied. Both papers are concerned with the initial-
boundary value problem in a cylinder complemented with the slip boundary or Navier’s
condition for velocity. The stability of a two-dimensional solution to the problem in a set
of three-dimensional solutions is studied. Moreover, the existence of a global strong-weak
solution to problem (1) close to the two-dimensional solution is proved.

I. Kagei examined in [6] and [7] the existence, uniqueness and large time behaviour for
the two-dimensional system (1)1,2,3, where the left-hand side of equation (1)3 additionally
contains the term −e2 · v, e2 = (0,1).

The stability of a stationary solution to the Navier–Stokes system with the nonhomoge-
neous Dirichlet boundary condition is studied in [8]. The existence of a weak solution to
the nonstationary problem which tends to a solution of the stationary problem as t → ∞, is
proved.

Moreover, [2]–[5] and [9]–[11] are devoted to various solvability and large time behaviour
questions for the Boussinesq system, that is, the system of equations (1)1,2,3, where the term
ν |D(v)|2 disappears.

2. RESULTS

Before stating the results we introduce the following notation. Let N0 = N∪{0} and let
Ω ⊂R3 be an open set. Norms in the Lebesgue spaces Lp(Ω), p ∈ [1,∞] and in the Sobolev
spaces W m

p (Ω), p ∈ [1,∞] are denoted by ‖ ·‖Lp and ‖ ·‖W m
p , respectively. In the special case

of the space Hm(Ω) =W m
2 (Ω) the norm is denoted by ‖ · ‖Hm . We also use the notation:

V = {u ∈ H1(Ω) : divu = 0 in Ω ,u · n̄ = 0 on S}.
Let I ⊂ R be an open interval. Then H2,1(Ω × I) denotes the space of functions u with the
norm

‖u‖H2,1(Ω×I) =
(
‖ut‖2

L2(Ω×I) + ∑
0≤|α |≤2

‖Dα
x u‖2

L2(Ω×I)

)2
,

where Dα
x = ∂ α1

x1 . . .∂ αn
xn

, |α|= α1 + . . .+αn, αi ∈ N0, i = 1, . . . ,n.
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Let X be a Banach space. By Lp(I;X) we denote the space of all measurable functions
u : I → X with the norm

‖u‖Lp(I;X) =

(∫
I
‖u(t)‖p

X dt
)1/p

if 1 < p < ∞

and
‖u‖L∞(I;X) = esssupt∈I ‖u(t)‖x.

Moreover, C(Ĩ;X) denotes the space of all continuous functions u : Ĩ → X with the norm
‖u‖C(Ĩ;X) = supt∈Ĩ ‖u(t)‖x.

First, we will formulate the main results concerning the stationary problem (2). We as-
sume that θ̄ ∈ H1(Ω) and introduce the function ϑ̂ = ϑ − θ̄ . Then problem (2) takes the
form

−νΔw+w ·∇w+∇q = α(ϑ̂ + θ̄)g in R,

divu = 0 in Ω ,

−κΔϑ̂ +w ·∇ϑ̂ = ν |D(w)|2 +κΔθ̄ −w ·∇θ̄ in Ω ,

ν n̄D(w)τ̄α = 0, α = 1,2, on S,
w · n̄ = 0 on S,

ϑ̂ = 0 on S.

(4)

Definition 1. We call a function (w, ϑ̂) ∈ V ×H1
0 (Ω) a weak solution to problem (4) if the

following integral identities hold

ν
2

∫
Ω
D(w) : D(ψ)dx+

∫
Ω

w ·∇wψ dx =
∫

Ω
α(ϑ̂ + θ̄)gψ dx ∀ψ ∈V (5)

and

κ

∫
Ω

∇ϑ̂ ·∇ϕ dx+
∫

Ω
w ·∇ϑ̂ϕ dx

= ν
∫

Ω
|D(w)|2ϕ dx+κ

∫
Ω

∇θ̄ ·∇ϕ dx−
∫

Ω
w ·∇θ̄ϕ dx ∀ϕ ∈ H1

0 (Ω), (6)

where D(w) : D(ψ) = ∑3
i, j=1 Di j(w)Di j(ψ), w ·∇wψ = ∑3

i, j=1 wiw jxiψ j, gψ = ∑3
i=1 giψi.

Definition 2.[
1◦ We say that a function (w,q, ϑ̂) is a strong-weak solution to (4) if (w, ϑ̂) is a weak so-

lution to (4), (w,q)∈H2(Ω)×H1(Ω) with
∫

Ω qdx = 0 and (w,q, ϑ̂) satisfies equation
(4)1 almost everywhere in Ω .

2◦ A function (w,q,ϑ) is called a strong-weak solution to (2) if (w,q, ϑ̂) is a strong-weak
solution to (4), where ϑ̂ = ϑ − θ̄ .

Our results referred to the stationary problem read as follows.
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Theorem 3. Let Ω ⊂ R3 be a bounded domain with a boundary S ∈ C3. Let g ∈ L∞(Ω),
θ̄ ∈ H1(Ω), 0 < σ < 1/8, α ∈ C1(R), |α(ϑ)| ≤ a1 + a2|ϑ |σ , |α ′(ϑ)| ≤ a3 for ϑ ∈ R,
where ai, i = 1,2,3, are constants such that a1 ≥ 0, a2,a3 > 0, Assume that θ̄ ≥ θ∗ almost
everywhere in Ω , where θ∗ is a positive constant. Then there exists a strong-weak solution
(w,q,ϑ) ∈ H2(Ω)×H1(Ω)×H1(Ω) with

∫
Ω q(x)dx = 0 to problem (2). Moreover,

‖w‖H2 +‖q‖H1 +‖ϑ − θ̄‖H1 ≤ ϕ(‖g‖L∞ +‖θ̄‖H1)(‖g‖L∞ +‖∇θ̄‖L2),

where ϕ = ϕ(‖g‖L∞ +‖θ̄‖H1) is a continuous increasing function.

Theorem 4. Let the assumptions of Theorem 3 hold. Assume that

‖g‖L∞ +‖∇θ̄‖L2 ≤ δ1,

where δ1 > 0 is a sufficiently small constant. Then there exists a unique strong-weak solution
to problem (2).

Now, we formulate results concerning the nonstationary problem. First, we define a weak
and strong-weak solution to problem (1).

Definition 5. Let T > 0 be given and let (w,ϑ ,q) be a strong-weak solution of problem (2).
We call a function (u,χ) a weak solution to problem (3) if

u ∈ L∞(kT,(k+1)T ;L2(Ω))∩L2(kT,(k+1)T ;V ), ut ∈ L2(kT,(k+1)T ;V ∗),
χ ∈ L∞(kT,(k+1)T ;L2(Ω))∩L2(kT,(k+1)T ;H1

0 (Ω)), χt ∈ L2(kT,(k+1)T ;H−1(Ω))

for all k ∈ N0 and

d
dt

∫
Ω

uψ dx+
ν
2

∫
Ω
D(u) : D(ψ)dx+

∫
Ω

u ·∇uψ dx

=−
∫

Ω
w ·∇uψ dx−

∫
Ω

u ·∇wψ dx+
∫

Ω
(α(ϑ +χ)−α(ϑ)) f ψ dx

+
∫

Ω
α(ϑ)hψ dx ∀ψ ∈V

in the sense of distributions on (kT,(k+1)T ),

d
dt

∫
Ω

χϕ dx+κ

∫
Ω

∇χ ·∇ϕ dx+
∫

Ω
u ·∇χϕ dx

=−
∫

Ω
w ·∇χϕ dx−

∫
Ω

u ·∇ϑϕ dx

+ν
∫

Ω
|D(u)|2ϕ dx+2ν

∫
Ω
D(u) : D(w)ϕ dx ∀ϕ ∈ H1

0 (Ω)

in the sense of distributions on (kT,(k+1)T ),

u|t=kT = u(kT ),
χ|t=kT = χ(kT )

for all k ∈ N0.
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Remark. In the above definition u|t=0 = u(0) ≡ v0−w, χ|t=0 = χ(0) ≡ θ0−ϑ and the
initial conditions u|t=kT = u(kT ), χ|t=kT = χ(kT ) for k ∈N mean that the initial data at the
point t = kT are the terminal values u(kT ) and χ(kT ) of the functions u and χ in the interval
[(k−1)T,kT ], k ∈ N.

Definition 6.[
1◦ The triple (u,χ,η) is called a strong-weak solution to problem (3) if (u,χ) is

a weak solution to (3) with initial conditions u|t=kT = u(kT ),χ|t=kT = χ(kT ) for all
k ∈ N0, (u,η) ∈ (L∞(kT,(k+ 1)T ;H1(Ω))∩L2(kT,(k+ 1)T ;H2(Ω)))×L2(kT,(k+
1)T ;H1(Ω)) with

∫
Ω η dx = 0 and if (u,α,η) satisfies (3)1 almost everywhere in

Ω × (kT,(k+1)T ) for all k ∈ N0.

2◦ A function (v,θ , p) is called a strong-weak solution to (1) if (u,χ,η) is a strong-weak
solution to (3).

Our next result is concerned with the stability of a strong-weak stationary solution under
small nonstationary perturbations.

Theorem 7. Let the assumption of Theorem 4 hold. Let v0 ∈V , θ0 ∈ L2(Ω), θ0 ≥ θ∗ almost
everywhere in Ω and let T > 0 be given. Assume that f ∈C(R+;L∞(Ω)) and

sup
k∈N0

‖ f‖C([kT,(k+1)T ];L∞) ≤ δ1. (7)

Moreover, let
‖D(u(0))‖2

L2
+‖u(0)‖2

L2
+‖χ(0)‖2

L2
≤ γ (8)

and
‖h(t)‖2

L4
≤ δ2γ for all t ∈ R+ (9)

where δ2,γ > 0 are some constants. Let (w,ϑ ,q) be the strong-weak solution to problem (2)
which exists in virtue of Theorems 3 and 4. Assume that (u,χ,η) is a strong-weak solution
to problem (3). If γ and δi (i = 1,2) are sufficiently small then

‖D(u(t))‖2
L2
+‖u(t)‖2

L2
+‖χ(t)‖2

L2
≤ γ for all t ∈ R+. (10)

Moreover,

‖u‖2
H2,1(Ω×(kT,(k+1)T )) +‖χ‖2

L2(kT,(k+1)T ;H1)

+‖χt‖2
L2(kT,(k+1)T ;H−1) +‖∇η‖2

L2(kT,(k+1)T ;L2)
≤ c(T )γ, (11)

where c = c(T ) does not depend on k.

To prove the global existence theorem for problem (1) we apply the Galerkin approxima-
tions. We get
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Theorem 8. Let the assumptions of Theorem 4 hold. Let v0 ∈V , θ0 ∈ L2(Ω), θ0 ≥ θ∗ almost
everywhere in Ω and let T > 0 be given. Assume that f ∈ C(R+;L∞(Ω)) and conditions
(7)–(9) are satisfied. Let (w,ϑ ,q) be the strong-weak solution to problem (2) which exists
in virtue of Theorems 4 and 5. If γ and δi (i = 1,2) are sufficiently small then there exists
a unique strong-weak global solution to problem (1)

(v,θ , p) ∈ H2,1(Ω × (kT,(k+1)T ))

× (C([kT,(k+1)T ];L2(Ω))∩L2(kT,(k+1)T ;H1(Ω)))

×L2(kT,(k+1)T ;H1(Ω)), (k ∈ N0),

with
∫

Ω pdx = 0. Moreover, θ(kT )≥ θ∗ almost everywhere in Ω for k ∈ N0.

3. AUXILARY RESULTS

In what follows we use the following lemmas.

Lemma 9. Let Ω ⊂ R3 be a bounded domain and T > 0. Let θ0 ∈ L2(Ω) and assume that
θ0 ≥ θ∗ almost everywhere in Ω and θ̄ ≥ θ∗ almost everywhere in Ω , where θ∗ is a positive
constant. Let (v,θ , p) be a strong-weak solution to problem (1). Then

θ ≥ θ∗ almost everywhere in Ω ×R+.

Proof. Notice that the following identity holds:

1
2

d
dt

∫
Ω
(θ −θ∗)ϕ dx+κ

∫
Ω

∇(θ −θ∗) ·∇ϕ dx

+
∫

Ω
v ·∇(θ −θ∗)ϕ dx = ν

∫
Ω
|D(v)|2ϕ dx ∀ϕ ∈ H1

0 (Ω).

Since (θ −θ∗)− = (θ̄ −θ∗)− = 0 on S, inserting ϕ = (θ −θ∗)− = min(θ −θ∗,0) yields

1
2

d
dt

∫
Ω
(θ −θ∗)2

− dx+κ

∫
Ω
|∇(θ −θ∗)−|2 dx = ν

∫
Ω
|D(v)|2(θ −θ∗)− dx≤ 0.

Hence, ∫
Ω
(θ(t)−θ∗)2

− dx≤
∫

Ω
(θ0−θ∗)2

− dx = 0,

so

θ ≥ θ∗ almost everywhere in Ω ×R+.
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Consider the following stationary Stokes system with the slip boundary conditions

divT(v, p) = h in Ω ,

divv = 0 in Ω ,

v · n̄ = 0 on S,
ν n̄D(v)τ̄α = 0, α = 1,2, on S.

(12)

Lemma 10. Let Ω ⊂ R3 be a bounded domain with a boundary S ∈ C2 and let (v, p) be
a weak solution to problem (12). Then v ∈ H2(Ω), ∇p ∈ L2(Ω) and

‖v‖H2 +‖∇p‖L2 ≤ c‖h‖L2 .

The assertion of Lemma 10 follows from the regularity theory for general elliptic equa-
tions and systems (see [1], [12]).

4. EXISTENCE OF A STATIONARY SOLUTION

The purpose of this section is to present proofs of Theorems 3 and 4. To prove Theorem 3
we need the following lemma:

Lemma 11. Let Ω ⊂ R3 be a bounded domain with a boundary S ∈C2. Let 0 < σ < 1/8,
α ∈C(R) and

|α(ϑ)| ≤ a1 +a2|ϑ |σ for ϑ ∈ R, (13)

where ai, i = 1,2, are constants such that a1 ≥ 0, a2 > 0. Let g ∈ L∞(Ω), p1 =
4

3σ , p2 =
1
σ ,

r = 1
8σ , s1 =

1
4σ , s2 =

1
2σ , p′i =

pi
pi−1 , s′i =

si
si−1 , i = 1,2, r′ = r

r−1 . Assume that (w,q, ϑ̂) is
a strong-weak solution to problem (4). Then

‖w‖H2 +‖q‖H1 +‖ϑ̂‖H1 ≤ cF, (14)

where

F = (‖g‖2r′
L∞ +‖g‖2

L2
+‖g‖2

L∞‖θ̄‖2σ
L2

+‖g‖L3/2 +‖θ̄‖σ
L 3

2 σ p1
‖g‖L 3

2 p′1
+‖g‖s′1

L 3
2 p′1

)2

+‖g‖L2 +‖g‖s′2
L2p′2

+‖∇θ̄‖2
L2
+‖∇θ̄‖L2 .

Proof. The proof is similar to the proof of [15, Lemma 3.2]. Inserting ψ = w ∈V ∩H2(Ω)
into (5) we obtain

ν
2
‖D(w)‖2

L2
=
∫

Ω
α(ϑ̂ + θ̄)gwdx.

By the Korn inequality we obtain

‖w‖2
H1 ≤ c

[‖g‖L∞‖w‖Lq(‖ϑ̂‖σ
Lσq′ +‖θ̄‖

σ
Lσq′ )+‖g‖L2‖w‖L2

]
,
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where q′ = 2
σ > 16, q = q′

q′−1 . Hence by the Poincaré inequality

‖w‖H1 ≤ c
[‖g‖L∞(‖ϑ̂‖σ

L2
+‖θ̄‖σ

L2
)+‖g‖L2

]
and therefore

‖w‖2
H1 ≤ ε‖ϑ̂‖1/4

L2
+ c(ε)(‖g‖2r′

L∞ +‖g‖2
L2
)+ c‖g‖2

L∞‖θ̄‖2σ
L2
, (15)

where ε > 0.

Next, inserting ϕ = ϑ̂ into (6) we get

κ‖∇ϑ̂‖2
L2

= ν
∫

Ω
|D(w)|2ϑ̂ dx+κ

∫
Ω

∇θ̄ ·∇ϑ̂ dx−
∫

Ω
w ·∇θ̄ ϑ̂ dx

≤ c(‖w‖2
H2 +‖∇θ̄‖L2 +‖∇θ̄‖2

L2
)‖∇ϑ̂‖L2 ,

which yields
‖ϑ̂‖H1 ≤ c(‖w‖2

H2 +‖∇θ̄‖2
L2
+‖∇θ̄‖L2). (16)

We need an estimate of ‖w‖L2 . Therefore we rewrite (4)1,2,4,5 in the form

−νΔw+∇q = α(ϑ̂ + θ̄)g−w ·∇w in Ω ,

divw = 0 in Ω ,

ν n̄D(w)τ̄α = 0, α = 1,2, on S,
w · n̄ = 0 on S.

By [1], [12] it follows the inequality

‖w‖W 2
δ
+‖∇q‖Lδ ≤ c(‖α(ϑ̂ + θ̄)g‖Lδ +‖w ·∇w‖Lδ ). (17)

Let δ = 3/2. Then (15) gives

‖w ·∇w‖L3/2 ≤ c‖w‖2
H1 ≤ c(‖g‖2r′

L∞ +‖g‖2
L2
)+ ε‖ϑ̂‖1/4

L2
+ c‖g‖2

L∞‖θ̄‖2σ
L2
.

Moreover,

‖α(ϑ̂ + θ̄)g‖L3/2 ≤ c(‖g‖L3/2 +‖ϑ̂‖σ
L 3

2 σ p1
‖g‖L 3

2 p′1
+‖θ̄‖σ

L 3
2 σ p1

‖g‖L 3
2 p′1

).

Hence,

‖w‖W 2
3/2

+‖∇q‖L3/2

≤ ε‖ϑ̂‖1/4
2 + c

(‖g‖2r′
L∞ +‖g‖2

L2
+‖g‖2

L∞‖θ̄‖2σ
L2

+‖g‖L3/2 +‖θ̄‖σ
L 3

2 σ p1
‖g‖L 3

2 p′1
+‖g‖s′1

L 3
2 p′1

)
.

Next, we use (17) with δ = 2. Proceding in the same way as in [15] we get

‖w‖H2 +‖∇q‖L2 ≤ ε‖ϑ̂‖1/2
L2

+ c
[
(‖g‖2r′

L∞ +‖g‖2
L2
+‖g‖2

L∞‖θ̄‖2σ
L2

+‖g‖L3/2

+‖θ̄‖σ
L 3

2 σ p1
‖g‖L 3

2 p′1
+‖g‖s′1

L 3
2 p′1

)2 +‖g‖L2 +‖g‖s′2
L2p′2

]
. (18)

Using (13) in (18) and assuming that ε is sufficiently small we get (14).
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Now, we consider problem (4)3,6 for given w.

Lemma 12. For given w ∈ H2(Ω)∩V and θ̄ ∈ H1(Ω) there exists a unique weak solution
ϑ̂ ∈ H1

0 (Ω) of the problem

−κΔϑ̂ +w ·∇ϑ̂ = ν |D(w)|2 +κΔθ̄ −w ·∇θ̄ in Ω ,

ϑ̂ = 0 on S.
(19)

Moreover, the solution satisfies inequality (16).

Lemma 12 follows by applying the Lax–Milgram theorem.

Now, let us fix w ∈ H2(Ω)∩V and introduce an operator T : H2(Ω)∩V → H2(Ω)∩V
such that Tw = w∗ given by the formula

ν
2

∫
Ω
D(w∗) : D(ψ)dx+

∫
Ω

w ·∇wψ dx =
∫

Ω
α(ϑ̂ + θ̄)gψ dx ∀ψ ∈V, (20)

where ϑ̂ ∈ H1
0 (Ω) is a weak solution to problem (19).

Lemma 13. Let Ω ⊂ R3 be a bounded domain with a boundary S ∈ C3. Let g ∈ L4(Ω),
θ̄ ∈ H1(Ω), 0 < σ < 1/8 and condition (13) hold. Moreover, let |α ′(ϑ)| ≤ a3 for ϑ ∈ R,
where a3 > 0 is a constant. Assume that for i = 1,2 we have wi ∈ H2(Ω)∩V , w∗i = Twi,
where ϑ̂i is the solution of (19) corresponding to wi. Then

‖w∗1−w∗2‖H2 ≤ c
[
(‖ϑ̂1‖H1 +‖∇θ̄‖L2)‖g‖L4

+(‖w1‖W 1
4
+‖w2‖W 1

4
)(‖g‖L4 +1)

]‖w1−w2‖W 1
4
. (21)

Proof. We substract (6) for i = 2 from (6) for i = 1 and then insert ϕ = ϑ̂1− ϑ̂2. Using the
Poincaré inequality we obtain

‖ϑ̂1− ϑ̂2‖H1 ≤ c(‖ϑ̂1‖H1 +‖w1‖W 1
4
+‖w2‖W 1

4
+‖∇θ̄‖L2)‖w1−w2‖W 1

4
. (22)

Since w∗i ∈ H2(Ω)∩V , i = 1,2, satisfies (20) there exist qi ∈ H1(Ω), i = 1,2, such that

−νΔ(w∗1−w∗2)+∇(q1−q2)
= (α(ϑ1 + θ̄)−α(ϑ2 + θ̄))g+w2 ·∇w2−w1 ·∇w1 in Ω ,

div(w∗1−w∗2) = 0 in Ω ,

(w∗1−w∗2)n̄ = 0 on S,
n̄T(w∗1−w∗2,q1−q2)τ̄α = 0, α = 1,2, on S,

where by the mean value theorem

|α(ϑ1 + θ̄)−α(ϑ2 + θ̄)|
= |α ′(β (ϑ̂1 + θ̄)+(1−β )(ϑ̂2 + θ̄))| |ϑ1−ϑ2| ≤ a3|ϑ1−ϑ2|, β ∈ (0,1).
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Therefore, w∗1−w∗2 satisfies the inequality

‖w∗1−w∗2‖H2 +‖∇(q1−q2)‖L2

≤ c
[‖(ϑ̂1− ϑ̂2)g‖L2 +‖(w1−w2) ·∇w1‖L2 +‖w2 ·∇(w1−w2)‖L2

]
≤ c
[‖‖ϑ̂1− ϑ̂2‖H1‖g‖L4 +‖w1−w2‖W 1

4
(‖w1‖W 1

4
+‖w2‖W 1

4
)
]
.

Hence in view of (22) inequality (21) follows.

Now we can prove Theorems 3 and 4.

Proof of Theorem 3. By Lemma 13 the operator T : H2(Ω)∩V → H2(Ω)∩V is con-
tinuous and compact since the imbedding H2(Ω)∩V →W 1

4 (Ω) is compact. Assume that
w ∈ H2(Ω)∩V is a solution to the equation

w = λTw,

where λ ∈ [0,1]. Then w satisfies (14). Therefore, by the Leray–Schauder fixed point theo-
rem there exists a strong-weak solution to problem (4) which implies the existence of strong-
weak solution of problem (2).

Proof of Theorem 4. Let (wi,qi, ϑ̂i), i = 1,2, be two different solutions to problem (4).
Repeating the proof of Lemma 13 we get the inequality

‖w1−w2‖H2 +‖∇(q1−q2)‖L2 +‖ϑ̂1− ϑ̂2‖H1

≤ c
[
(‖ϑ̂1‖H1 +‖∇θ̄‖L2 +‖w1‖H2 +‖w2‖H2)(1+‖g‖L4)

]‖w1−w2‖H2 .

By Lemma 11 it follows that

‖w1‖H2 +‖w2‖H2 +‖ϑ̂1‖H1 +‖∇θ̄‖L2 ≤ cF.

Therefore if δ1 is sufficiently small then

cF(1+‖g‖L4)< 1.

Thus, we get the uniqueness of problem (4). Therefore, the uniqueness of a solution (w,q,ϑ)
to problem (2) also follows.

5. STABILITY OF THE STATIONARY SOLUTION AND
EXISTENCE OF A SOLUTION TO PROBLEM (1)

The aim of this section is to prove Theorems 7 and 8. First, we will derive differential
inequality which is essential for the proof of stability of the stationary solution. We start with
some lemmas.
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Lemma 14. Let the assumptions of Theorem 3 hold and let T > 0 be given. Let
f ∈ C([kT,(k + 1)T ];L∞(Ω)) for all k ∈ N0. Assume that (w,q,ϑ) is the stationary solu-
tion which exists in virtue of Theorem 3. Let (u,χ,η) be a sufficiently regular solution to
problem (3). Then

d
dt
(‖u‖2

L2
+‖χ‖2

L2
)+ c

(
ν
2
‖D(u)‖2

L2
+κ‖χ‖2

H1

)
≤ c
(
ε)(‖∇u‖4

L2
‖χ‖2

L2
+‖∇ϑ‖2

L2
‖u‖2

L3
+‖u‖2

H1‖∇w‖2
L3

+‖h‖L4 +‖h‖2
L4
‖ϑ‖L2 +‖χ‖2

L2
‖ f‖2

L3

)
+ ε‖u‖2

H2 in (kT,(k+1)T ), k ∈ N0,

(23)

where ε > 0 is a constant and the constant c = c(ε) does not depend on k.

Proof. Let us rewrite equation (3)1 in the form

ut−divT(u,η)

=−(u ·∇)u− (u ·∇)w−w ·∇u+[α(χ +ϑ)−α(ϑ)] f +α(ϑ)h in Ω . (24)

Multiplying (24) by u and integrating over Ω we get

1
2

d
dt
‖u‖2

L2
+

ν
2
‖D(u)‖2

L2

=−
∫

Ω
u ·∇wudx+

∫
Ω

α(ϑ)hudx+
∫

Ω
(α(χ +ϑ)−α(ϑ)) f udx

≤ ε‖u‖2
H1 + c(ε)

[
‖∇w‖2

L3
‖u‖2

L2
+‖h‖2

L2
+‖h‖2

L4

(∫
Ω
|ϑ |4σ dx

)1/2

+‖χ‖2
L2
‖ f‖2

L3

]
,

where we used the inequality |α(χ +ϑ)−α(ϑ)| ≤ a3|χ|, which follows from the mean
value theorem. Continuing and using the fact that 0 < σ < 1/8 we have

1
2

d
dt
‖u‖2

L2
+

ν
2
‖D(u)‖2

L2

≤ ε‖u‖2
H1 + c(ε)(‖∇w‖2

L3
‖u‖2

L2
+‖h‖2

L4
+‖h‖2

L4
‖ϑ‖L2 +‖χ‖2

L2
‖ f‖2

L3
). (25)

Next, multiplying equation (3)3 by χ and then integrating over Ω gives

1
2

d
dt
‖χ‖2

L2
+κ‖∇χ‖2

L2
=−

∫
Ω

w ·∇χχ dx−
∫

Ω
u ·∇ϑ χ dx+ν

∫
Ω
|D(u)|2χ dx

+2ν
∫

Ω
D(u) : D(w)χ dx≡

4

∑
i=1

Ii. (26)

Estimate the terms Ii on the right-hand side of (26). We have

I1 = 0, I2 ≤ ε‖χ‖2
L6
+ c(ε)‖∇ϑ‖2

L2
‖u‖2

L3
, I3 ≤ c‖∇u‖2

L3
‖χ‖L3 .
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Applying the Gagliardo–Nirenberg interpolation inequality

‖v‖L3 ≤ c‖v‖1/2
H1 ‖v‖1/2

L2
for v ∈ {∇u,χ} (27)

we get

I3 ≤ c‖∇u‖H1‖∇u‖L2‖χ‖1/2
L2
‖χ‖1/2

H1 ≤ ε‖∇u‖2
H1 + c(ε)‖∇u‖2

L2
‖χ‖L2‖χ‖H1

≤ ε(‖∇u‖2
H1 +‖χ‖2

H1)+ c(ε)‖∇u‖4
L2
‖χ‖2

L2
.

Moreover,

I4 ≤ c‖∇u‖L2‖∇w‖L3‖χ‖L6 ≤ ε‖χ‖2
H1 + c(ε)‖∇u‖2

L2
‖∇w‖2

L3
.

Using the above estimates in (26) we obtain

1
2

d
dt
‖χ‖2

L2
+κ‖∇χ‖2

L2

≤ ε(‖∇u‖2
H1 +‖χ‖2

H1)+ c(ε)(‖∇u‖4
L2
‖χ‖2

L2
+‖∇ϑ‖2

L2
‖u‖2

L3
+‖∇u‖2

L2
‖∇w‖2

L3
).

(28)

Adding inequalities (25) and (28), assuming that ε is sufficiently small and applying the
Korn and Poincaré inequalities we get (23).

Lemma 15. Let the assumptions of Lemma 14 be satisfied. Then

d
dt
‖D(u)‖2

L2
+ c(‖u‖2

H2 +‖η‖2
H1)

≤ c(‖u‖6
H1+‖w‖2

W 1
4
‖u‖2

H1+‖ f‖2
L∞‖χ‖2

L2
+‖h‖2

L4
‖ϑ‖L2+‖h‖2

L2
) in (kT,(k+1)T ), k ∈ N0,

where the constants c do not depend on k.

Proof. Multiplying (24) by −divT(u,η) and integrating over Ω yields

ν
4

d
dt
‖D(u)‖2

L2
+‖divT(u,η)‖2

L2

=
∫

Ω
u ·∇udivT(u,η)dx+

∫
Ω

u ·∇wdivT(u,η)dx+
∫

Ω
w ·∇wdivT(u,η)dx

−
∫

Ω
α(ϑ)hdivT(u,η)dx−

∫
Ω
[α(χ +ϑ)−α(ϑ)] f divT(u,η)dx.

Hence,

ν
4

d
dt
‖D(u)‖2

L2
+‖divT(u,η)‖2

L2

≤ ε‖divT(u,η)‖2
L2

+ c(ε)
[
‖u ·∇u‖2

L2
+‖w ·∇u‖2

L2
+‖u ·∇w‖2

L2
+‖h‖2

L4

(∫
Ω
|ϑ |4σ dx

)1/2

+‖h‖2
L2
+‖(α(χ +ϑ)−α(ϑ))χ f‖2

L2

]
,

where the constant c do not depend on k.
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To estimate ‖u ·∇u‖2
L2

we use interpolation inequality (27), so we get

‖u ·∇u‖2
L2
≤ c‖u‖2

L6
‖∇u‖2

L3
≤ c‖u‖2

H1‖∇u‖2
H1‖∇u‖2

L2
≤ ε‖∇u‖2

H1 + c(ε)‖u‖6
H1 .

Using the Hölder inequalities and the Sobolev imbedding to estimate the other terms on the
right-hand side of (25), and then assuming that ε is sufficiently small we obtain

d
dt
‖D(u)‖2

L2
+ c‖divT(u,η)‖2

L2
≤ c
(‖u‖6

H1 +‖w‖2
W 1

4
‖∇u‖2

L2
+‖∇w‖2

L3
‖u‖2

H1

+‖h‖2
L4
‖ϑ‖2σ

L2
+‖h‖2

L2
+‖ f‖2

L∞‖χ‖2
L2

)
.

Next, since by Lemma 10

‖u‖H2 +‖∇η‖H1 ≤ c‖T(u,η)‖L2 ,

the assertion of the lemma follows.

Lemmas 14 and 15 imply

Lemma 16. Let the assumptions of Lemma 14 hold. Then

d
dt
(‖u‖2

L2
+‖D(u)‖2

L2
+‖χ‖2

L2
)+ c(‖u‖2

H2 +‖χ‖2
H1)

≤ c
(‖u‖6

H1 +‖w‖2
W 1

4
‖u‖2

H1 +‖∇u‖4
L2
‖χ‖2

L2
+‖∇ϑ‖2

L2
‖u‖2

H1

+‖h‖2
L4
+‖h‖2

L4
‖ϑ‖2σ

L2
+‖χ‖2

L2
‖ f‖2

L∞

)
in (kT,(k+1)T ), k ∈ N0,

(29)

where the constants c do not depend on k.

Now, introduce notation:

X(t) = ‖Du(t)‖2
L2
+‖u(t)‖2

L2
+‖χ(t)‖2

L2
,

Y (t) = ‖u(t)‖2
H2 +‖χ(t)‖2

H1 ,

A(t) = ‖w‖2
W 1

4
+‖∇ϑ̂‖2

L2
+‖∇θ̄‖2

L2
+‖ f (t)‖L∞ ,

G(t) = ‖h(t)‖2
L4
, B = ‖ϑ‖2σ

L2
.

Lemma 17. Let the assumptions of Lemma 14 and Theorem 4 be satisfied. Assume that

sup
k∈N0

‖ f‖C([kT,(k+1)T ];L∞) ≤ δ1, X(0)≤ γ, G(t)≤ δ2γ for all t ∈ R+.

If the constants γ and δi (i = 1,2) are sufficiently small then

X(t)≤ γ for all t ∈ [kT,(k+1)T ], k ∈ N0.
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Proof. Inequality (29) yields

dX
dt

+ c1X ≤ c2(X3 +AX +G+BG), for t ∈ (kT,(k+1)T ), k ∈ N0,

where c1,c2 > 0.

From Theorems 3 and 4 it follows that

A(t)≤ c3δ1 for all t ∈ (kT,(k+1)T ], k ∈ N0,

where c3 > 0.

Assume that δ1 is so small that c2c3δ1 ≤ c1
2 . Then we have

dX
dt

+
c1

2
X ≤ c2(X3 +G+BG) for all t ∈ (kT,(k+1)T ), k ∈ N0.

Next, assume that for some k ∈ N0
X(kT )≤ γ.

Let
t∗ = inf{t ∈ (kT,(k+1)T ) : X(t)> γ}. (30)

Then
dX
dt

(t∗)+
c1

2
γ ≤ c2(γ3 +δ2γ + c4δ2γ),

where B≤ c4, c4 > 0. For δ2 and γ so small that

c2(γ2 +δ2 + c4δ )≤ c1

4

we get
dX
dt

(t∗)< 0.

This is a contradiction with (30). Hence

X(t)≤ γ for t ∈ [kT,(k+1)T ].

This ends the proof.

Lemma 18. Let the assumption of Lemma 17 hold. Then

‖u‖2
H2,1(Ω×(kT,(k+1)T )) +‖χ‖2

L2(kT,(k+1)T ; H1)

+‖χt‖2
L2(kT,(k+1)T ;H−1) +‖∇η‖2

L2(kT,(k+1)T ;L2)
≤ c(T )γ.(31)

Proof. Integrating (29) with respect to time from kT to (k+1)T we get

‖u‖2
L2(kT,(k+1)T ;H2) +‖χ‖2

L2(kT,(k+1)T ;H1) ≤ c(T )γ. (32)

The other norms of (31) are estimated by using (32) and equations (3)1,3.
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The proofs of Theorems 7 and 8. The assertions of Theorems 7 and 8 follow by the
Galerkin approximations. We choose in V a special basis which consists of eigenfunctions
of the Stokes operator with the slip boundary conditions, and in H1

0 (Ω) we take a basis
composed of eigenfunctions of the Laplace operator with the Dirichlet boundary condition.
We repeat the proofs of Lemmas 14–18 (with slight modifications) to obtain inequalities (10)
and (11) for the Galerkin approximations. Passing to the limit yields assertion of Theorem 7
and the existence of a strong-weak solution to problem (1).

In order to prove the uniqueness of a solution to problem (1) we have to show the unique-
ness of a solution to problem (3). Let (ui,χi,ηi), i = 1,2, be two solutions of this problem
and let U = u1− u2, K = χ1− χ2, H = η1−η2. Using the definition of the weak solution
(see Definition 5) we get

d
dt
‖U‖2

L2
+ν‖D(U)‖2

L2

=−2
∫

Ω
U ·∇u1U dx−2

∫
Ω

U ·∇wU dx+2
∫

Ω
(α(ϑ +χ1)−α(ϑ +χ2))K fU dx

≤ c(‖∇u2‖L2 +‖∇w‖L2)‖U‖2
H1 + ε‖U‖2

H1 +C(ε)‖K‖2
L2
‖ f‖2

L∞ , (33)

and

d
dt
‖K‖2

L2
+2κ‖∇K‖2

L2

=−2
∫

Ω
U ·∇χ1K dx−2

∫
Ω

U ·∇ϑK dx+2ν
∫

Ω
|D(U)|2K dx

+4ν
∫

Ω
D(U) : D(u2)K dx+4ν

∫
Ω
D(U) : D(w)K dx

≤ c
[
(‖∇χ1‖2

L2
+‖∇ϑ‖2

L2
+‖∇u2‖2

H1 +‖∇w‖2
H1)‖U‖2

H1 +‖U‖4
H1‖K‖2

L2

]
+ ε‖K‖2

H1 .

(34)

Now, adding (33) and (34), and using Theorems 3, 4 and 7 we obtain

d
dt
(‖U‖2

L2
+‖K‖2

L2
)+ c(‖U‖2

H1 +‖K‖2
H1)

≤ c(γ +δ1)(‖U‖2
H1 +‖K‖2

L2
)+ ε(‖U‖2

H2 +‖K‖2
H1)

+ c(‖∇χ1‖2
L2
+‖∇u2‖2

H1)‖U‖2
H1 . (35)

Assuming that γ , δ1 and ε are sufficiently small inequality (35) we obtain

d
dt
(‖U‖2

L2
+‖K‖2

L2
)+ c(‖U‖2

H1 +‖K‖2
H1)

≤ c(‖∇χ1‖2
L2
+‖∇u2‖2

H1)‖U‖2
H1 + ε‖U‖2

H2 . (36)

In order to derive an estimate for the norm ‖U‖2
H2 we consider the equation

Ut−divT(U,H)+U ·∇U
=−U ·∇u2−u2 ·∇U−w ·∇U−U ·∇w+α ′K f in Ω ×R+.
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Multiplying the above equation by −divT(U,H) we have

ν
2

d
dt
‖D(U)‖2

L2
+‖divT(U,H)‖2

L2

≤ ε‖divT(U,H)‖2
L2
+ c(ε)

[
(‖U‖2

L6
+‖u2‖2

L6
‖w‖2

L6
)‖∇U‖2

L3

+(‖∇w‖2
L3
+‖∇u2‖2

L3
)‖U‖2

L6
+‖K‖2

L2
‖ f‖2

L∞

]
.

Hence for sufficiently small ε

d
dt
‖D(U)‖2

L2
+ c‖U‖2

H2 ≤ c(γ +δ1)‖U‖2
H2 + cδ1‖K‖2

L2
+ c‖∇u2‖2

H1‖U‖2
H1 . (37)

Adding (36) and (37) we get

d
dt
(‖D(U)‖2

L2
+‖U‖2

L2
+‖K‖2

L2
)+ c(‖U‖2

H2 +‖K‖2
H1)≤ c(‖∇χ1‖2

L2
+‖∇u2‖2

H1)‖U‖2
H1 ,

for sufficiently small ε , γ and δ1, which implies that

‖U(t)‖H1 +‖K(t)‖H1 = 0.

This completes the proof.
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[12] V. A. Solonnikov, General boundary value problems for systems elliptic in the sense of A. Douglis and L.
Nirenberg. II, Trudy Mat. Inst. Steklov. 92 (1966), 233–297.
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[14] E. Zadrzyńska and W. M. Zajączkowski, On some global solutions to 3d incompressible heat-conducting
motions, Ann. Polon. Math. 119 (2017), 79–94.
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1. INTRODUCTION

We consider Weierstrass elliptic functions based on the lattice

Λ = {mλ1 +nλ2 : m,n ∈ Z}=: [λ1,λ2] , λ2/λ1 /∈ R,

given by the formula

℘Λ(z) =
1
z2 + ∑

ω∈Λ\{0}

(
1

(z−ω)2 −
1

ω2

)
.

It is a wide class of meromorphic functions, periodic with respect to Λ and of order two.
We refer the reader to [5, 6] for a general description of dynamical and measure-theoretic
properties of ℘Λ depending on the lattice Λ. Some results on specific parametrized families
of Weierstrass elliptic functions can be found there as well. For an introduction to the theory
of iterating complex functions see e.g. [3].
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Even fixing the type of the lattice Λ, i.e., the shape τ = λ2/λ1 of the corresponding period
parallelogram of℘Λ, we still obtain an incredible richness of dynamical behaviour and prop-
erties of Weierstrass functions. We are particularly interested in two families of functions:
those based on triangular lattices, i.e., satisfying e2πi/3Λ = Λ, and those based on square
lattices, that is lattices such that iΛ = Λ. Let us specify the families Wt and Ws we are
interested in.

The family Wt consists of all Weierstrass elliptic functions based on triangular lattices.
Formally,

Wt =
{

fλ :=℘Λλ : C→ C, where Λλ = [λ ,e2πi/3λ ], λ ∈ C\{0}
}
.

All Weierstrass elliptic functions based on square lattices are members of the familyWs, i.e.,

Ws =
{

fλ :=℘Λλ : C→ C, where Λλ = [λ ,λ i], λ ∈ C\{0}} .
Since most of the considerations are the same for both families, we are not to restrictive
about the notation. We will point out the differences when necessary.

The dynamics of these functions is fairly rigid because of the close relationship between
trajectories of critical values. Therefore, there are only a couple of possible structures of
the Fatou set that may occur – we will list them in the next section (Lemma 5 and Lemma 6).
In this paper, we will show that one of the cases, i.e. when fλ satisfies the so-called Misi-
urewicz condition, appears very rarely.

The notion of Misiurewicz maps derives from the paper [9] by M. Misiurewicz, where the
author studied, among other topics, the real quadratic family ga(x) = 1−ax2 in the case when
ga is non-hyperbolic and the critical point 0 is non-recurrent. We refer the reader to [1] for
a nice discussion concerning various definitions of the Misiurewicz condition in the complex
case. For the considered families of Weierstrass elliptic function we introduce the following
definition.

Definition 1. A function fλ from the family Wt or Ws satisfies the Misiurewicz condition
(equivalently λ is a Misiurewicz parameter) if all singular values of fλ belong to the Julia
set and the set P( fλ )∩C (the finite part of the postsingular set) is bounded and disjoint from
the set Crit( fλ ) of the critical points of fλ .

In other words, every singular value of fλ is either a prepole or has a bounded trajectory
staying at a positive distance from the set of critical points Crit( fλ ). This may seem more
restrictive than the definition introduced by Graczyk, Kotus and Świątek in [4], as we demand
that all singular values lie in the Julia set, but after analysis of dynamics of functions from
the considered families it will become clear that the above definition is natural in this case.
Note also that the definition includes the case (sometimes referred as pure Misiurewicz) when
all singular values are preperiodic.

It was proved by M. Aspenberg in [1] that the set of Misiurewicz maps has the Lebesgue
measure zero in the space of rational functions of any fixed degree. Next, this result was
extended in [2] to the exponential family, which is one-dimensional space of entire transcen-
dental maps. In this paper, we generalize these results and prove the following theorem.
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Theorem 2. For the familiesWt andWs, the set of Misiurewicz parameters has the Lebesgue
measure zero in C.

We will prove this result in two steps. First, we deal with parameters to which we can
apply similar technique as in [1, 2] and show that the following theorem is true:

Theorem 3. For the families Wt and Ws, the set of parameters λ for which there exists in
the Julia set J( fλ ) a critical value which is not a prepole and has a bounded trajectory not
accumulating on the critical set Crit( fλ ) has the Lebesgue measure zero in C.

Because of the close relationship between all critical trajectories in the considered fami-
lies, the assumptions of Theorem 3 imply, in particular, that all critical values of fλ (except
for the pole 0 in the case of a square lattice) are not prepoles and have bounded trajectories
in J( fλ ) separated from Crit( fλ ), hence fλ is a special case of a Misiurewicz map.

However, in order to deal with all Misiurewicz parameters, we need to consider one more
case, i.e. when all critical values of fλ are prepoles. Therefore, at the end of the article we
will prove the following lemma.

Lemma 4. For the familiesWt andWs, the set of parameters λ for which all critical values
of fλ are prepoles is countable.

Note that Theorem 3 and Lemma 4 imply the main result of the paper, i.e. Theorem 2,
since elliptic functions have no asymptotic values.

The proof of Theorem 3 in general follows the Aspenberg’s approach from [1], repeated
in [2] with some changes for the exponential family. Note, however, that in our case we
face new difficulties: we have to deal not only with infinite degree of maps and essential
singularity at ∞, but also with prepoles which become essential singularities in C for iterates
of considered functions. That is why we have to be sure that we can stay away from poles and
essential singularities in order to proceed with calculations. Some minor but crucial changes
had to be done especially in the section 3.1, where we prove existence of a holomorphic
motion and the so-called transversality condition and for measure estimates in a big scale in
the section 3.4 (see Lemma 19).

Lemma 4 is proved at the end of the paper. We describe the condition that all critical
values are prepoles by an analytic equation depending on a countable number of parameters
(this is possible because of the close relationship between critical values of considered func-
tions). Next, using postsingular stability, λ -lemma and the nonexistence of invariant line
fields (see [10, Theorem 1.1]), we show that roots of the equation are isolated, hence there
are only countably many parameters for which all critical values are prepoles.
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2. DYNAMICS OF FUNCTIONS FROM FAMILIESWT
ANDWS

Recall that an elliptic function has no asymptotic values, so the postsingular set P( fλ )
is the closure of the critical trajectories. Moreover, the Fatou set of any Weierstrass elliptic
function contains neither wandering domains, nor Baker domains, nor Herman rings (see [6,
Lemma 5.2, Theorem 5.4]).

Take any function fλ ∈Wt . It has three critical values e1, e2 and e3, all with the same mod-
ulus and forming the angle 2πi/3 with each other on the complex plane, i.e., e2 = e2πi/3e1
and e3 = e4πi/3e1. Recall that the triangular lattice is invariant under the rotation by the angle
2πi/3, thus the homogenity properties (cf. (3) in [6]) give that the same relationship holds for
every iterate of critical values, i.e. f n

λ (e2) = e2πi/3 f n
λ (e1) and f n

λ (e3) = e4πi/3 f n
λ (e1). More-

over, for any n ≥ 0, the derivative f ′λ ( f n
λ (ei)) is the same for i = 1,2,3. As a consequence

we obtain the following result (see [6, Proposition 5.3]):

Lemma 5. For any function fλ ∈Wt , one of the following cases occurs:

1. J( fλ ) = C.

2. For some period n and multiplier 0≤ β ≤ 1, there exist exactly three (super) attracting
or parabolic periodic cycles in F( fλ ) of period n with multiplier β .

3. There exists exactly one (super) attracting or parabolic periodic cycle in F( fλ ) which
contains all three critical values.

4. The only Fatou cycles are Siegel discs.

Since the dynamics of all three critical values is basically the same, it is enough to know
one of them to determine the other two. In particular, if the assumptions of Theorem 3 are
satisfied, then every ei is not a prepole and has a bounded trajectory in J( fλ ), separated from
Crit( fλ ). On the other hand, if one critical value is a prepole, so are the other two.

In case of square lattices, take some fλ ∈Ws. We have the following critical values: e1,
e2 =−e1 and e3 = 0, which is a pole of fλ , so the situation is even more rigid than before. By
the definition, fλ is even, so e1 and e2 share the same trajectory, which actually determines
the dynamics of fλ since e3 is always a pole. Thus, there are only three possibilities (see [6,
Proposition 5.4]).

Lemma 6. For any function fλ ∈Ws, one of the following cases occurs:

1. J( fλ ) = C.

2. There exists exactly one (super) attracting or parabolic periodic cycle in F( fλ ).

3. The only Fatou cycles are Siegel discs.
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Now, if the assumptions of Theorem 3 are satisfied, then all critical values are in J( fλ ).
Moreover, the trajectory of e1 and e2, which are not prepoles in this case, is bounded and
separated from Crit( fλ ). And just as for triangle lattices, if e1 or e2 is a prepole, then all
critical values of fλ are prepoles.

As we mentioned at the beginning there are various definitions of the Misiurewicz con-
dition in the complex case. One of the classical definitions, sometimes referred to as pure
Misiurewicz, demands that every singular value is preperiodic, i.e., is eventually mapped onto
a repelling periodic cycle in the Julia set. This condition, however, is very restrictive and we
usually introduce more general definitions very often depending on the family of functions
under consideration. In our case Definition 1 was inspired by the close relationship between
critical trajectories of functions from familiesWt andWs.

3. PROOF OF THEOREM 3

Denote by M the set of parameters λ satisfying the assumptions of Theorem 3 and by
eλ ∈ J( fλ ) the critical value of fλ (which is not a prepole) with bounded trajectory not
accumulating on Crit( fλ ). It follows that for every λ ∈M we can find some δ > 0 such that

Oλ (eλ )∩
(

B
(
Crit( fλ ),δ

)∪B
(
∞,δ

))
= /0, (1)

where Oλ (eλ ) =
⋃

n≥1 f n
λ (eλ ) is the forward trajectory of the critical value eλ and balls are

taken with respect to the spherical metric. The set of parameters for which (1) holds for any
critical value eλ ∈ J( fλ ) of fλ will be denoted byMδ . Note that

M=
⋃
n≥1

M1/n and δ1 < δ2 ⇒Mδ1 ⊃Mδ2 .

Similarly to the case of the exponential family (cf. [2]), we will show, following Aspen-
berg’s idea in [1], that parameters fromMδ are rare in any neighbourhood of λ0 ∈M.

Theorem 7. For families Wt and Ws, if λ0 ∈ M, then for every δ > 0 the set Mδ has
the Lebesgue density strictly smaller than 1 at λ0.

Obviously, Theorem 7 implies that μ(Mδ ) = 0 for every δ > 0, where μ is the Lebesgue
measure on C. Hence,

μ(M)≤ ∑
n≥1

μ(M1/n) = 0,

which is exactly the conclusion of Theorem 3.

In order to prove Theorem 7, we will focus on parameter λ0 ∈M and its neighbourhood
B(λ0,r) in the parameter plane. We will see how the assumptions on the critical value eλ0 and
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dynamical properties of familiesWt andWs imply exponential expansion onH, the closure
of the forward trajectory of eλ0 under fλ0 . This leads to the existence of a holomorphic mo-
tion h :H×B(λ0,r)→C conjugating the dynamics of fλ0 and nearby maps fλ , λ ∈ B(λ0,r),
on a neighbourhood of H. Next, we will use the expansion property and the absence of line
fields for Misiurewicz elliptic maps to derive nice distortion properties binding space and
parameter derivatives in a small scale. This allows us to control the growth of the parameter
ball B(λ0,r) to a big scale, where in turn we can estimate the measure of those parameters
which cannot belong toMδ ⊂M.

3.1. HOLOMORPHIC MOTION

Take a parameter λ0 ∈M for either one of those two families. As we have just seen, all
critical values of fλ0 are in the Julia set J( fλ0). Recall that the Fatou set F( fλ0) has neither
wandering domains, nor Baker domains, nor Herman rings. Moreover, fλ0 is expanding on
the closure of the critical trajectory, hence the close relationship between trajectories of all
critical values excludes the existence of Siegel discs. We conclude that the Fatou set must
be empty, thus J( fλ0) = C. Now, pick one of the critical values in J( fλ0) which is not a pole
and denote it by eλ0 . Here and in the following sections we use the spherical metric and
derivatives, unless otherwise stated.

Consider H = Oλ0(eλ0), the closure of the forward trajectory of eλ0 under fλ0 . It is com-
pact, forward invariant, contains neither critical nor parabolic points. Hence, by Theorem 1.2
in [10] (compare also with [4, Theorem 1]), H is a hyperbolic set, i.e., there exist real con-
stants C > 0 and a > 1 such that

|( f n
λ0
)′(z)| ≥Can for all z ∈H and n≥ 1.

Now, look at the nearby maps fλ , λ ∈ B(λ0,r), either in Wt or in Ws. We will follow
the proof of [8, Theorem III.1.6] locally in a neighbourhood of the hyperbolic setH to show
that if r > 0 is sufficiently small, there exists a holomorphic motion

h : H×B(λ0,r)→ C

such that hλ0 = id, the map hλ := h(·,λ ) : H→Hλ is quasiconformal for each λ ∈ B(λ0,r)
and h(z, ·) : B(λ0,r)→C is holomorphic at every z∈H. Moreover, it respects the dynamics,
i.e.,

hλ ◦ fλ0 = fλ ◦hλ on H.

First, notice thatH contains no prepoles of fλ0 . Fix an N ∈ N such that

∀ z ∈H, |( f N
λ0
)′(z)| ≥ 2ã

for some constant ã ! 1. Now, take a neighbourhood N of H such that even in a bigger
neighbourhood Nε = B(N ,ε), for some ε > 0, there are neither critical points of fλ0 , nor
prepoles of fλ0 of orders 1,2, . . . ,N.
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Now, we want to choose a sufficiently small radius r > 1 in the parameter space. We do it
in two steps, decreasing N if necessary, so that the following two conditions are satisfied:

1. ∀ λ ∈B(λ0,r),N contains neither critical points nor prepoles of fλ of orders 1,2, . . . ,N.

2. ∀ λ ∈ B(λ0,r), ∀ z ∈N , |( f N
λ )′(z)| ≥ ã! 1.

It is possible since the critical points and poles depend analytically on the parameter λ and
the derivative ( f N

λ )′(z) changes continuously with λ .

The choice of r > 0 guarantees the expanding property for all functions fλ , λ ∈ B(λ0,r),
where the constants C > 0 and a > 1 might have changed.

Lemma 8. There exist numbers C > 0, a > 1 and r > 0 such that whenever f j
λ (z) ∈ N for

j = 0, . . . ,k and λ ∈ B(λ0,r), then

|( f k
λ )
′(z)| ≥Cak.

The next step is to introduce an appropriate adapted metric defined for z ∈N as follows:

d(z) =
1
N

N−1

∑
n=0
|( f n

λ0
)′(z)|.

Choosing N carefully we get d(z) ≤C1 for all z ∈ N . Additionally, we can modify C1, so
that the estimate remains valid for every function fλ , λ ∈ B(λ0,r), decreasing r if necessary.

Let us compute derivative | f ′|d of the function f := fλ0 with respect to the adapted metric
for z ∈N .

| f ′(z)|d =| f ′(z)|d( f (z))
d(z)

=

| f ′(z)| 1
N

N−1
∑

n=0
|( f n)′( f (z))|

1
N

N−1
∑

n=0
|( f n)′(z)|

=

1
N

N−1
∑

n=0
|( f n+1)′(z)|

1
N

N−1
∑

n=0
|( f n)′(z)|

=1+
1
N (|( f N)′(z)|−1)

1
N

N−1
∑

n=0
|( f n)′(z)|

≥ 1+
ã−1
NC1

> 1,

hence |( fλ0)
′|d ≥ const > 1 on N .

Take a nearby function g := fλ , where λ ∈B(λ0,r) for sufficiently small r > 0, and z∈N .

|g′(z)|d = |g′(z)|d(g(z))
d(z)

=

|g′(z)| 1
N

N−1
∑

n=0
|( f n)′(g(z))|

1
N

N−1
∑

n=0
|( f n)′(z)|

=

1
N

N−1
∑

n=0
|( f n ◦g)′(z)|

1
N

N−1
∑

n=0
|( f n+1)′(z)|

| f ′(z)|d.
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Since |( fλ0)
′(z)|d ≥ const > 1 on N , if follows that if r > 0 is sufficiently small (decreasing

N if necessary), then for any λ ∈ B(λ0,r)

|( fλ )
′|d ≥ C̃ > 1 on N .

This is a consequence of the form of the derivative with respect to the adapted metric as we
consider only finitely many iterates, there are no prepoles of fλ of orders 1,2, . . . ,N in N
and values of functions and iterates (which are holomorphic, bounded and equicontinuous
on N ) depend continuously on λ .

We proceed exactly as in [8]. Let ε > 0 be such that for every z∈H, B(z,ε)d ⊂N (the ball
with respect to the adapted metric). If r > 0 is sufficiently small, then for every λ ∈ B(λ0,r)
we have fλ (B(z,ε)d)⊃ B( fλ0(z),ε)d . Hence, for every n ∈ N and z ∈H, the set

Wλ ,n =
{

w : f k
λ (w) ∈ B

(
f k
λ0
(z),ε

)
d

for k = 0,1, . . . ,n
}

is nonempty and its diameter does not exceed 2εC̃−n. Therefore, there exists a unique
point hλ (z) such that f n

λ (hλ (z)) ∈ B( f n
λ0
(z),ε)d for all n ∈ N. We immediately get

hλ ( fλ0(z)) = fλ (hλ (z)). Moreover, hλ is continuous and injective.

Since the holomorphic motion h : H × B(λ0,r) → C respects the dynamics and
fλ0(H)⊂H, we get

fλ (hλ (H)) = hλ ( fλ0(H))⊂ hλ (H),

thus the setHλ := hλ (H) is fλ -invariant and by the Lemma 8, it is a hyperbolic set for fλ .

Now, we want to obtain the so-called transversality condition (cf. [1]), which says that
the critical value eλ of fλ cannot follow the holomorphic motion hλ (eλ0) of the critical
value of fλ0 in the whole parameter ball B(λ0,r). In the triangular case, it follows from the
non-existence of invariant line-fields for Misiurewicz maps proved by Graczyk, Kotus and
Świątek in [4, Theorem 2]. For the case of square lattices we refer the reader to the more
general result [10, Theorem 1.1]. For convenience, we will use notation analogous to [1].

Recall that there is a strong relationship between the trajectories of critical values of func-
tions in both familiesWt andWs, in particular the trajectory of eλ determines the dynamics
of fλ . Consider a holomorphic function x : B(λ0,r)→ C given by

x(λ ) = eλ −hλ (eλ0)

which is exactly the difference between the critical value of fλ and the holomorphic motion
of the critical value of the starting map fλ0 (we assume that the radius of the parameter
ball is so small that there is only one critical value of fλ close to eλ0). Note that hλ (eλ0)
always belongs to the hyperbolic set Hλ . Obviously x(λ0) = 0. Our aim is to show that λ0
is an isolated zero of x.

Lemma 9. The function x is not identically zero in any ball B(λ0,r) in the parameter plane.
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Proof. Suppose that x(λ )≡ 0 on some ball B(λ0,r), which means that for any λ close to λ0
the trajectory of the critical value eλ stays in the appropriate hyperbolic set Hλ . It follows
that the trajectories of all critical values of fλ , except for the pole e3 in the case of square
lattice, lie in some hyperbolic set. Thus, the parameter λ0 is postsingularly stable, since
trajectories of all critical values of fλ behave the same way for all parameters λ close to λ0.
We can, therefore, extend hλ to a quasiconformal conjugacy on the consecutive preimages
of eλ and next, by the λ -Lemma (cf. [7, λ -Lemma]), to a quasiconformal conjugacy on the
whole Julia set J( fλ0) = C between fλ0 and fλ for any λ ∈ B(λ0,r). In this case, however,
there would be an fλ0-invariant line field on J( fλ0) which cannot exist by [10, Theorem 1.1]
(cf. [4, Theorem 2]).

Therefore we have

x(λ ) = αK(λ −λ0)
K +αK+1(λ −λ0)

K+1 + . . . (2)

for some K ≥ 1 and αK �= 0. This property will be crucial to obtain distortion estimates in
the next section.

3.2. DISTORTION ESTIMATES

In this section, we derive distortion estimates based on the expansion property near the hy-
perbolic set H. It is rather technical and mainly follows the analogous proofs in [1] and [2].
We decided however to keep it in a very detailed form for the convenience of the reader and
also because of are minor but crucial differences.

Recall that we have chosen the neighbourhood N of the hyperbolic set H and r > 0, so
that for all functions fλ , λ ∈ B(λ0,r), we have the expansion property stated in Lemma 8.
Assume, moreover, that N is closed, bounded (hence compact in C) and for some δ > 0

N ∩ (B(Crit( fλ ),δ
)∪B

(
∞,δ

))
= /0.

From now on, when we take some δ ′ > 0 for which {z : dist(z,H) ≤ 11δ ′} ⊂ N , we
always assume r > 0 to be so small that {z : dist(z,Hλ )≤ 10δ ′} ⊂ N for each λ ∈ B(λ0,r).
This means thatHλ , the hyperbolic set for fλ , is well inside N .

The neighbourhood N was chosen so that for some N ≥ 1, ã > 1 and for all z ∈ N ,
λ ∈ B(λ0,r), we have |( f N

λ )′(z)| ≥ ã. Thus, for every z ∈ N we can find a number r(z)> 0
such that

| f N
λ (z)− f N

λ (w)| ≥ ã|z−w| (3)

for all w ∈ N with |z−w| ≤ r(z) (decreasing slightly ã > 1 if necessarily). Since N is
compact and r(z) changes continuously, we can find a universal r̃ > 1 such that (3) holds for
every z,w ∈N with |z−w| ≤ r̃. This implies exponential expansion in a small scale.
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Lemma 10. There are constants δ̃ ,C > 0 and a > 1 such that for every λ ∈ B(λ0,r) and for
every z,w ∈N , if f j

λ (z), f j
λ (w) ∈N and | f j

λ (z)− f j
λ (w)| ≤ δ̃ for j = 0, . . . ,k, then

| f k
λ (z)− f k

λ (w)| ≥Cak|z−w|.

Proof. Every integer k can be written in the form k = pN + q, where q ≤ N− 1. For some
C̃, δ̃ > 0 we can estimate for all λ ∈ B(λ0,r)

| fλ (z)− fλ (w)| ≥ C̃|z−w| for all z,w ∈N with |z−w| ≤ δ̃ .

If we take z,w ∈N satisfying assumptions of the lemma, then

| f k
λ (z)− f k

λ (w)| ≥ ãp| f q
λ (z)− f q

λ (w)| ≥ ãpC̃q|z−w| ≥ akC|z−w|

for a = ã
1
N and some C > 0.

We will use the expansion property in the following distortion estimates to show that in
a small scale parameter and space derivatives are comparable. For λ ∈ B(λ0,r) and n ≥ 0,
put

ξn(λ ) = f n
λ (eλ ) and μn(λ ) = f n

λ (hλ (eλ0)) = hλ ( f n
λ0
(eλ0)).

Then ξn(λ ) is the forward orbit of the critical value for fλ , while μn(λ ) is the holomorphic
motion of the critical orbit for fλ0 , hence μn(λ ) ∈Hλ . In particular, x(λ ) = ξ0(λ )−μ0(λ ).

The following lemma will be used several times in our distortion estimates (see [1] for
references).

Lemma 11. Let un ∈ C for n = 1, . . . ,N. Then∣∣∣∣∣ N

∏
n=1

(1+un)−1

∣∣∣∣∣≤ exp

(
N

∑
n=1
|un|
)
−1.

Let us begin with the Main Distortion Lemma concerning control of the space derivative
in a neighbourhood of the hyperbolic set.

Lemma 12. For every ε > 0, we can find δ ′> 0 and r > 0 arbitrarily small with the following
property: for any a,b ∈ B(λ0,r), if |ξk(λ )−μk(λ )| ≤ δ ′ for all k ≤ n and λ = a,b, then∣∣∣∣( f n

a )
′(ea)

( f n
b )
′(eb)

−1
∣∣∣∣< ε.

Proof. First, we will show that for an arbitrarily small ε1 it is possible to choose δ ′ > 0 so
that ∣∣∣∣( f n

λ )
′(μ0(λ ))

( f n
λ )
′(ξ0(λ ))

−1
∣∣∣∣≤ ε1 (4)

provided |ξk(λ )−μk(λ )| ≤ δ ′ for all k ≤ n.
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By the expansion property, and since | f ′λ |>C−1
δ on N for some Cδ > 0, we can estimate

for any λ ∈ B(λ0,r)

n−1

∑
j=0

∣∣∣∣ f ′λ (μ j(λ ))− f ′λ (ξ j(λ ))
f ′λ (ξ j(λ ))

∣∣∣∣≤Cδ

n−1

∑
j=0

∣∣ f ′λ (μ j(λ ))− f ′λ (ξ j(λ ))
∣∣

≤Cδ max
z∈N

| f ′′λ (z)|
n−1

∑
j=0
|μ j(λ )−ξ j(λ )|

≤ C̃
n−1

∑
j=0

Ca j−n|μn(λ )−ξn(λ )| ≤C′δ ′,

where max | f ′′λ (z)| is bounded on B(λ0,r), since N contains no poles of f j
λ for j = 1, . . . ,N

and λ ∈ B(λ0,r). Using Lemma 11, we obtain the inequality (4) if δ ′ > 0 is small enough.

Secondly, for any ε2 > 0, if δ ′ > 0 and r > 0 are chosen sufficiently small, then for every
t,s ∈ B(λ0,r), ∣∣∣∣ ( f n

t )
′(μ0(t))

( f n
s )
′(μ0(s))

−1
∣∣∣∣≤ ε2. (5)

Put aλ , j = f ′λ (μ j(λ )). Since each aλ , j is analytic with respect to λ , it can be expressed as
follows: aλ , j = aλ0, j(1+ c j(λ −λ0)

l + . . .). Moreover, by Lemma 10 and (2) we have

n≤−C log |x(λ )| ≤ −C̃ log |λ −λ0|, (6)

where constants depend only on δ ′ and not on n. Thus, if c = ∑n−1
j=0 c j,

( f n
t )
′(μ0(t))

( f n
s )
′(μ0(s))

=
n−1

∏
j=0

at, j

as, j
=

n−1

∏
j=0

aλ0, j(1+ c j(t−λ0)
l + . . .)

aλ0, j(1+ c j(s−λ0)l + . . .)
=

1+ cn(t−λ0)
l + . . .

1+ cn(s−λ0)l + . . .
.

Now, both the numerator and the denominator can be made arbitrarily close to one if only
r > 0 is small enough, since they are of orders 1 + O(|t − λ0|l log |t − λ0|) and
1+O(|s−λ0|l log |s−λ0|), respectively.

Putting together (4) and (5) we complete the proof.

Next, we compare space and parameter derivatives.

Lemma 13. Let ε > 0. If δ ′ > 0 is sufficiently small, then for every 0 < δ ′′ < δ ′, there exists
r > 0 such that the following holds: for any λ ∈ B(λ0,r), if |ξk(λ )− μk(λ )| ≤ δ ′ for k ≤ n
and |ξn(λ )−μn(λ )| ≥ δ ′′, then∣∣∣∣ ξ ′n(λ )

( f n
λ )
′(μ0(λ ))x′(λ )

−1
∣∣∣∣≤ ε.

Proof. Note that
ξn(λ ) = μn(λ )+( f n

λ )
′(μ0(λ ))x(λ )+En(λ ), (7)
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where |En(λ )| ≤ ε1|ξn(λ )−μn(λ )| independently of n, for any small ε1 > 0, if only δ ′ > 0
was chosen small enough. To verity this we will proceed similarly as in the first part of
the proof of Lemma 12. First, we can write

( f n
λ )
′(μ0(λ ))x(λ )

ξn(λ )−μn(λ )
=

n−1

∏
j=0

f ′λ (μ j(λ ))(ξ j(λ )−μ j(λ ))
ξ j+1(λ )−μ j+1(λ )

.

By the expansion property (Lemma 10) we can estimate as follows:∣∣∣∣ f ′λ (μ j(λ ))(ξ j(λ )−μ j(λ ))
ξ j+1(λ )−μ j+1(λ )

−1
∣∣∣∣≤ 1

Ca

∣∣∣∣ f ′λ (μ j(λ ))− ξ j+1(λ )−μ j+1(λ )
ξ j(λ )−μ j(λ )

∣∣∣∣
≤ 1

Ca
max
z∈N

| f ′′λ (z)| |ξ j(λ )−μ j(λ )|

≤ M′′

Ca
C−1a j−n|ξn(λ )−μn(λ )|,

for M′′ = max{| f ′′λ (z)| : z ∈ N ,λ ∈ B(λ0,r)}, which is finite by the choice of N . Applying
Lemma 11, we obtain the desired estimate.

Put again f ′λ (μ j(λ )) = aλ , j, then ( f n
λ )
′(μ0(λ )) = ∏n−1

j=0 aλ , j. Now, differentiate ξn with
respect to λ . By the Chain Rule, we get

ξ ′n(λ ) =μ ′n(λ )+ x′(λ )
n−1

∏
j=0

aλ , j + x(λ )
n−1

∑
j=0

a′λ , j
∏n−1

k=0 aλ ,k
aλ , j

+E ′n(λ )

=
n−1

∏
j=0

aλ , j

(
x′(λ )+ x(λ )

n−1

∑
j=0

a′λ , j
aλ , j

+
μ ′n(λ )+E ′n(λ )

∏n−1
j=0 aλ , j

)
.

In the following, we want to show that x′(λ ) is the leading term in the above expression.

Recall that δ ′′ ≤ |ξn(λ )−μn(λ )| ≤ δ ′. Thus, by (7) and the estimate on |En(λ )| we have

(1− ε1)δ ′′ ≤ |x(λ )|
n−1

∏
j=0
|aλ , j| ≤ (1+ ε1)δ ′. (8)

Now, we need to estimate |∑ a′λ , j
aλ , j
|. Note that, since μ j(λ ) = f j

λ (μ0(λ )) ∈Hλ , we get

|aλ , j|= | f ′λ (μ j(λ ))| ≤ max
z∈Hλ ,λ∈B(λ0,r)

| f ′λ (z)| and |aλ , j| ≥Ca , C,a > 0.

Since aλ , j are uniformly bounded for every j and λ ∈ B(λ0,r), then, by Cauchy’s formula,
also a′λ , j are uniformly bounded by some M′ > 0 on a slightly smaller ball B(λ0,r′). We get∣∣∣∣∣n−1

∑
j=0

a′λ , j
aλ , j

∣∣∣∣∣≤ n−1

∑
j=0

∣∣∣∣∣a
′
λ , j

aλ , j

∣∣∣∣∣≤ n
M′

Ca
=: nC̃.
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Thus, using (6), we get

|x(λ )|
∣∣∣∣∣∑ a′λ , j

aλ , j

∣∣∣∣∣≤ |x(λ )|nC̃ ≤ |x(λ )|C′(− log |x(λ )|)C̃,

where C′ > 0 depends only on δ ′. Moreover, up to a multiplicative constant,

−|x(λ )| log |x(λ )|
|x′(λ )| " −|(λ −λ0)

K| log |λ −λ0|
|(λ −λ0)K−1| " −|λ −λ0| log |λ −λ0|. (9)

Let us estimate

ξ ′n(λ )
( f n

λ )
′(μ0(λ ))x′(λ )

−1 =

∏aλ , j

(
x′(λ )+ x(λ )∑

a′λ , j
aλ , j

+
μ ′n(λ )+E ′n(λ )

∏aλ , j

)
∏aλ , j x′(λ )

−1

=
x(λ )∑

a′λ , j
aλ , j

x′(λ )
+

μ ′n(λ )+E ′n(λ )
∏aλ , j x′(λ )

.

By (9), the first summand tends uniformly to zero as λ → λ0. To see what happens with
the second summand, note that |μ ′n(λ )+E ′n(λ )| is uniformly bounded by Cauchy’s formula,
since μn(λ ) and En(λ ) are bounded. We have also seen that |∏aλ , j x(λ )| is bounded (from
both sides) independently of n. Therefore, by (8), we get∣∣∣∣ 1

∏aλ , j x′(λ )

∣∣∣∣= ∣∣∣∣ 1
∏aλ , j x(λ )

∣∣∣∣ ∣∣∣∣ x(λ )
x′(λ )

∣∣∣∣≤ 1
δ ′′(1− ε1)

∣∣∣∣ x(λ )
x′(λ )

∣∣∣∣" |λ −λ0|,

thus also the second summand tends uniformly to zero as λ → λ0. This completes the proof.

Combining Lemma 12 and Lemma 13, we obtain the following result.

Corollary 14. Let ε > 0. If δ ′ > 0 is small enough and 0 < δ ′′ < δ ′, we can find r > 0 such
that for every λ ∈ B(λ0,r), if |ξk(λ )−μk(λ )| ≤ δ ′ for k≤ n and |ξn(λ )−μn(λ )| ≥ δ ′′, then∣∣∣∣ ξ ′n(λ )

( f n
λ )
′(eλ )x′(λ )

−1
∣∣∣∣≤ ε.

3.3. DISTORTION IN AN ANNULUS

As we have seen in the previous section, we need to move away from λ0 in the parameter
ball B(λ0,r) in order to have nice distortion estimates. That is why we will restrict our con-
siderations to an annular domain. This approach gives us a powerful tool, which is bounded
distortion of ξn, and leads to the control of the growth of B(λ0,r) under ξn.

235



Agnieszka Zimnicka

Consider an annulus in the parameter space

A = A(λ0;r1,r2) = {λ : r1 < |λ −λ0|< r2}.

Note that, by (2), for some constant C ≥ 1 and any λ1,λ2 ∈ A,

C−1
(

r1

r2

)K−1

≤
∣∣∣∣x′(λ1)

x′(λ2)

∣∣∣∣≤C
(

r2

r1

)K−1

,

where K is the degree of x(.) at λ0. Therefore, from Corollary 14 and Lemma 12, we con-
clude that if r2 > 0 is small enough, then

C̃−1
(

r1

r2

)K−1

≤
∣∣∣∣ξ ′n(λ1)

ξ ′n(λ2)

∣∣∣∣≤ C̃
(

r2

r1

)K−1

for some C̃ ≥ 1 and all λ1,λ2 ∈ A, as long as |ξk(λ ) − μk(λ )| ≤ δ ′ for k ≤ n and
|ξn(λ )−μn(λ )| ≥ δ ′′ for all λ ∈ A.

Lemma 15. Let ε > 0. If δ ′ > 0 and δ ′′
δ ′ are sufficiently small and 0 < δ ′′ < δ ′, then there

exists an r > 0 such that any parameter ball B = B(λ0,r2) ⊂ B(λ0,r) has the following
property: Let n be maximal such that |ξn(λ )− μn(λ )| ≤ δ ′ for all λ ∈ B. Let r1 < r2 be
minimal such that |ξn(λ )−μn(λ )| ≥ δ ′′ for all λ ∈ A = A(λ0;r1,r2). Then r1

r2
≤ 1

10 and there
exists some δ ′1, δ ′′ < δ ′1 < δ ′, such that

A
(
μn(λ0);δ ′′(1+ ε),δ ′1(1− ε)

)⊂ ξn(A)⊂ A
(
μn(λ0);δ ′′(1− ε),δ ′1(1+ ε)

)
.

Moreover, ξn is at most K-to-1 on B.

Proof. Note that the parameter circle γr = {λ : |λ − λ0| = r} for small r > 0 is mapped
under x(.) onto a curve that encircles λ0 K times so that x(γr) is close to a circle of radius
αKrK . Moreover, |μn(λ )−μn(λ0)|= |hλ ( f n

λ0
(eλ0))− f n

λ0
(eλ0)| is arbitrarily small for small

radii in the parameter space, since H and Hλ can be as close to each other as desired for
λ ∈ B(λ0,r). Thus, if r is small and |ξn(λ )−μn(λ )| ≥ δ ′′, then

|ξn(λ )−μn(λ )|> P|μn(λ )−μn(λ0)| (10)

for some big P ! 1 depending only on δ ′′ and r. Arguing again like in the proof of
Lemma 13, we get for every ε1 > 0 we can choose δ ′ > 0 and r > 0 so that

|ξn(λ )−μn(λ )− ( f n
λ )
′(eλ )x(λ )|< ε1|ξn(λ )−μn(λ )| (11)

for all λ ∈ B(λ0,r).

If r1 is minimal such that |ξn(λ )−μn(λ )| ≥ δ ′′ for all λ ∈ A(λ0;r1,r2), then for some λ1
with |λ1−λ0|= r1 we have

|ξn(λ1)−μn(λ1)|= δ ′′. (12)
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On the other hand, from the definition of n, we obtain that for some λ2 with |λ2−λ0| = r2,
|ξn+1(λ2)−μn+1(λ2)| ≥ δ ′. But

|ξn+1(λ2)−μn+1(λ2)|= | fλ2(ξn(λ2))− fλ2(μn(λ2))| ≤M′|ξn(λ2)−μn(λ2)|,
where M′ = max{| f ′λ (z)| : z ∈ N ,λ ∈ B(λ0,r)}, which is finite since N contains neither
poles nor essential singularities of fλ . Therefore, we get

|ξn(λ2)−μn(λ2)| ≥ δ ′

M′ . (13)

Moreover, by (11), for every λ ∈ B(λ0,r), if r > 0 and δ ′ > 0 are small enough, then

1
1+ ε1

|( f n
λ )
′(eλ )x(λ )| ≤ |ξn(λ )−μn(λ )| ≤ 1

1− ε1
|( f n

λ )
′(eλ )x(λ )|. (14)

Using (12), (13), (14) and Lemma 12 we can estimate as follows:

δ ′

δ ′′
≤ M′|ξn(λ2)−μn(λ2)|

|ξn(λ1)−μn(λ1)| ≤M′1+ ε1

1− ε1

∣∣∣∣∣( f n
λ2
)′(eλ2)x(λ2)

( f n
λ1
)′(eλ1)x(λ1)

∣∣∣∣∣≤M′ (1+ ε1)
2

1− ε1

∣∣∣∣x(λ2)

x(λ1)

∣∣∣∣ .
Thus, we can choose δ ′′ > 0 so small that r1

r2
≤ 1

10 independently of n.

Now, we want to see how many times ξn(λ )−μn(λ ) orbits around 0 as the parameter λ
moves along the circle γr, r > r1. To establish this, let us look at the expression ξn(λ )−μn(λ )

|ξn(λ )−μn(λ )| .
By (11) we have ∣∣∣∣ ξn(λ )−μn(λ )

|ξn(λ )−μn(λ )| −
( f n

λ )
′(eλ )x(λ )

|ξn(λ )−μn(λ )|
∣∣∣∣≤ ε1,

so it is the same to ask how many times ( f n
λ )
′(eλ )x(λ ) encircles 0. By Lemma 12, ( f n

λ )
′(eλ )

is essentially constant on B(λ0,r2), so the number we are looking for is K, the same as for
x(λ ). Furthermore, (10) implies that |μn(λ )−μn(λ0)| is much smaller than |ξn(λ )−μn(λ )|.
This means that ξn(λ ) orbits around μn(λ0) = ξn(λ0) also K times, close to some circle
centered at μn(λ0). By the Argument Principle, the degree of ξn is at most K.

In order to prove that the shape of the considered set is really close to round, let us take
λ1,λ2 with |λ1−λ0|= |λ2−λ0|= r. Then, again by (14) and Lemma 12, we obtain the fol-
lowing estimates∣∣∣∣ξn(λ1)−μn(λ0)

ξn(λ2)−μn(λ0)

∣∣∣∣≤1+ ε
1− ε

∣∣∣∣ξn(λ1)−μn(λ1)

ξn(λ2)−μn(λ2)

∣∣∣∣≤ (1+ ε)2

(1− ε)2

∣∣∣∣∣( f n
λ1
)′(eλ1)x(λ1)

( f n
λ2
)′(eλ2)x(λ2)

∣∣∣∣∣
≤(1+ ε)3

(1− ε)2

∣∣∣∣∣( f n
λ2
)′(eλ2)x(λ1)

( f n
λ2
)′(eλ2)x(λ2)

∣∣∣∣∣= (1+ ε)3

(1− ε)2

∣∣∣∣x(λ1)

x(λ2)

∣∣∣∣ .
For r small enough, last expression can be arbitrarily close to 1 independently of n. This
means that the set ξn(γr) is close to a circle centered at ξn(λ0) = μn(λ0) and of radius
|ξn(λ )− μn(λ0)| for any |λ −λ0| = r, so the annulus A is mapped onto a slightly distorted
annulus, whose shape can be controlled independently of n. This completes the proof of
the lemma.

237



Agnieszka Zimnicka

Using the notation of the previous lemma, we obtain from its proof and Lemma 12 the fol-
lowing important corollary:

Corollary 16. If δ ′ > 0 and r > 0 are small enough and n is maximal such that
|ξn(λ )−μn(λ )| ≤ δ ′ for all λ ∈ B(λ0,r2), then for all λ ′ ∈ B(λ0,r2) satisfying |λ ′ −λ0|= r2

we have |ξn(λ ′)−μn(λ ′)| ≥ δ ′
2M′ .

3.4. MEASURE ESTIMATES

By now we know how to control the behaviour of ξn in a small scale. In this section, we
will derive measure estimates in a large scale, i.e. when a parametric ball attains some fixed
size under ξn. Recall that we consider fλ , λ ∈ B(λ0,ε), for some small ε > 0 and that λ0
is the parameter satisfying assumptions of Theorem 3. Assuming that r ≤ ε is so small that
z and its holomorphic motion hλ (z) are close enough for all z ∈ H and λ ∈ B(λ0,r), from
Lemma 15 and Corollary 16 we get the following fact:

Proposition 17. There exist δ ′ > 0 and 0 < r < ε , depending only on fλ0 , such that for
any 0 < r2 < r, if n is the biggest number for which diam(ξn(B(λ0,r2))) ≤ δ ′, then we can
find two discs D1 i D2 such that D1 ⊂ D ⊂ D2, where D = ξn(B(λ0,r2)), with the following
properties

diam(D2)

diam(D1)
= 4M′, diam(D1) =

δ ′

M′

and D1 is centered at μn(λ0) ∈ J( fλ0). The degree of ξn on B(λ0,r) is bounded above by K,
depending only on the family fλ , λ ∈ B(λ0,ε).

The next step is to estimate the Lebesgue measure of the set of those parameters λ for
which some iterate f n

λ (eλ ) either turns back to a neighbourhood of a critical point or escapes
close to infinity. First, however, we need to know how many iterates are required to cover
a neighbourhood of infinity and critical points

Uδ = B
(
Crit( fλ0),δ

)∪B(∞,δ ), (15)

for an arbitrarily small δ > 0. To be more precise, we want to estimate the number of iterates
of fλ , λ ∈ B(λ0,r) for some r > 0, after which the image of a small disk intersecting the Julia
set covers Uδ .

Recall that the Julia set J( fλ ) is the closure of the prepoles of fλ (see e.g. [3]), thus
any open disc intersecting the Julia set after a finite number of steps will cover under fλ
the whole C (elliptic functions have no omitted values). Moreover, since poles move holo-
morphically with the parameter λ , the number of steps is locally constant in the parameter
plane.
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Lemma 18. Let D be an open and bounded set disjoint from Uδ , containing an open disk of
radius d > 0 centered at the Julia set of some f = fλ . Then we can choose an N, depending
only on d, f and Uδ , such that

inf
{

m ∈ N : f m(D)⊃Uδ
}≤ N.

Proof. Cover J( f )\Uδ with a collection of open disks Dz of diameter d centered at z ∈
J( f )\Uδ . Since the prepoles of f are dense in J( f ), for every Dz there is a minimal n = n(z)
such that

f n(Dz)⊃Uδ .

Since f n is continuous, n(z) is constant in some neighbourhood of z. Moreover, J( f )\Uδ is
compact in C, hence we can find an integer N such that n(z)≤ N for every z.

Note that we can choose r > 0 so that the statement holds for every fλ , λ ∈ B(λ0,r) and
possibly slightly bigger N, which depends only on d > 0 for r small enough. It is possible
since the dependence on λ is analytic, hence continuous.

We know now that f m(D) �Uδ for some m ≤ N. We will estimate the measure of those
points from D that get mapped into Uδ under f j for some j ≤ m. Recall that f = fλ is
a Weierstrass elliptic function and D is an open and bounded set disjoint from Uδ . In particu-
lar, D∩B(∞,δ ) = /0. The following lemma is similar to an analogous one in the exponential
case [2], however, because of the presence of poles, we need to be much more careful. Let
μ denotes the Lebesgue measure on the Riemann sphere C and recall that the derivatives are
spherical and Uδ is given by (15).

Lemma 19. Assume that D is an open set disjoint from Uδ and f m(D)�Uδ for some integer
m. Then there exists a constant C > 0, depending only on f , m and Uδ , such that

μ
({

z ∈ D : f j(z) ∈Uδ for some 1≤ j ≤ m
})≥Cμ(D).

Proof. Let us define

F = {z ∈ D : f j(z) ∈Uδ for some 1≤ j ≤ m}
Divide F into m pairwise disjoint subsets, i.e., the following domains of the first entry map
to Uδ :

F1 = {z ∈ D : f (z) ∈Uδ}= f−1(Uδ )∩D,

F2 = {z ∈ D : f 2(z) ∈Uδ but f (z) /∈Uδ}= f−2(Uδ )∩ f−1 (C\Uδ
)∩D,

F3 = {z ∈ D : f 3(z) ∈Uδ but f (z) /∈Uδ , f 2(z) /∈Uδ},
...

Fm = {z ∈ D : f m(z) ∈Uδ but f j(z) /∈Uδ for j ≤ m−1}

= f−m(Uδ )∩
m−1⋂
j=1

f− j (C\Uδ
)∩D.
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Then, obviously, F = F1∪F2∪ . . .∪Fm and the sets F1, . . . ,Fm are pairwise disjoint. More-
over, since D is bounded, the definition assures that no Fj contains an essential singularity of
f j, so the spherical derivative of f j is well defined everywhere in Fj for j = 1, . . . ,m. Notice
also that

D\F = {z ∈ D : f (z) /∈Uδ , . . . , f m(z) /∈Uδ}=
m⋂

j=1

f− j (C\Uδ
)∩D.

Since C \Uδ is bounded, the set D \F contains no poles of any f j for j = 1, . . . ,m, hence,
also, no essential singularity of f m.

To estimate the degree of f m on D\F , recall that f is periodic with respect to an appro-
priate lattice and on every period parallelogram the degree of f equals two. The set C\Uδ is
bounded in C, i.e. it is contained in C\B(∞,δ ), so it intersects finitely many, say nδ , period
parallelograms. Hence, the degree of f on C \Uδ is bounded by 2nδ . Now, every iterate
of f that we consider, maps a subset of C \Uδ back into C \Uδ . Thus, the degree of f 2 is
bounded by (2nδ )

2 on the set f−1 (C\Uδ
)∩ (C \Uδ ), etc. We conclude that the degree of

f m on D\F is at most (2nδ )
m and this number depends only on f , m and δ .

Moreover, on every Fj, the spherical derivative |( f j)′| is bounded from above by some
constant c j = c j( f ,m,δ ). On the other hand. on D\F the quantity |( f m)′| is bounded from
below by a constant a = a( f ,m,δ ) > 0 (there are neither poles nor essential singularities
of f m and we are far away from Crit( f m)). We get the following estimates:

μ(Uδ )≤
m

∑
j=1

∫
Fj

|( f j)′(z)|2dμ(z)≤
m

∑
j=1

c2
j μ(Fj)≤ max

j=1,...,m
c2

j

m

∑
j=1

μ(Fj) =: C1μ(F). (16)

Denote g(w) = {z ∈ D\F : f m(z) = w} for w ∈ C\Uδ . Then

μ(D\F) =
∫

C\Uδ

∑
z∈g(w)

|( f m)′(z)|−2dμ(w)≤ (2nδ )
ma−2μ

(
C\Uδ

)
=: κ μ

(
C\Uδ

)
. (17)

Finally, for some constant Mδ depending only on δ , we have

μ(Uδ )≥Mδ μ
(
C\Uδ

)
. (18)

Combining (16), (17) and (18) we obtain

μ(F)≥ 1
C1

μ(Uδ )≥
Mδ
C1

μ(C\Uδ )≥
Mδ
C1κ

μ(D\F),

which implies that
μ(F)≥Cμ(D)

for some constant C =C( f ,m,δ ).
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3.5. CONCLUSION

To conclude the proof of Theorem 7, recall that fλ0 is a Weierstrass elliptic function from
Wt or Ws with λ0 ∈M and consider nearby maps fλ , λ ∈ B(λ0,r), for some small r > 0.
Take an arbitrarily small δ > 0 (e.g. such that λ0 ∈Mδ ). We want to show that the set Mδ
has the Lebesgue density less than one at λ0.

Assume that r > 0 is so small that critical points of fλ , λ ∈ B(λ0,r), are δ/4 close to
appropriate critical points of fλ0 – it is possible since critical points depend analytically on λ
and we have only finitely many periodic families of critical points for Weierstrass elliptic
functions. Then we have

∀λ∈B(λ0,r) U3δ/4 ⊂ B
(
Crit( fλ ),δ

)∪B(∞,δ ), (19)

where Uδ is given by (15). In what follows, we will estimate the Lebesgue measure of the set
of parameters λ , for which some iterate of a critical value eλ falls into U3δ/4, hence λ /∈Mδ .

Let δ ′ > 0 and r > 0 be chosen so that the statement of Proposition 17 is satisfied and
all our expansion and distortion properties hold. Consider a parameter ball B = B(λ0,r2) for
any r2 ≤ r and let n be the largest integer for which the set D := ξn(B) has the diameter at
most δ ′. Let the discs D1 ⊂ D⊂ D2 be as in Proposition 17.

Lemma 18 implies that there exists an N > 0 such that f m
λ0
(D1) � Uδ/2 for some

m ≤ N, independently of the center of D1. Because of the inclusions D1 ⊂ D ⊂ D2 and
since diam(D2)/diam(D1) = 4M′ we get, by Lemma 19,

μ
({

z ∈ D : f m
λ0
(z) ∈Uδ/2

})
≥C1μ(D) (20)

for some constant C1 depending only on the family fλ , the set Uδ and N. Since we have only
finitely many steps to consider, we can decrease, if necessary, the radius r > 0 so that for
every λ ∈ B(λ0,r),

f m
λ0
(ξn(λ )) ∈Uδ/2 =⇒ ξn+m(λ ) = f m

λ (ξn(λ )) ∈U3δ/4

for any m≤ N.

Lemma 20. It is possible to choose δ ′′ ∈ (0,δ ′) so that for every r2, 0 < r2 < r and for every
λ ∈ B(λ0,r2)

ξn+ j(λ ) ∈U3δ/4 for some j ≤ N =⇒ λ ∈ A(λ0;r1,r2),

where r1 > 0 is minimal for which |ξn(λ )−μn(λ )| ≥ δ ′′ for all λ ∈ A(λ0;r1,r2).

Proof. We can choose δ ′′ > 0 as small as desired, provided r > 0 is small enough. Thus, to
ensure that for any λ ∈ B(λ0,r) with |ξn(λ )−μn(λ )| ≤ δ ′′ and for all j ≤ N

|ξn+ j(λ )−μn+ j(λ )| ≤ b j|ξn(λ )−μn(λ )| ≤ δ ′
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it is sufficient to choose δ ′′ so small that bN ≤ δ ′
δ ′′ , where

b = max{| f ′λ (z)| : z ∈N ,λ ∈ B(λ0,r)} , 1 < b < ∞.

Next, we know that μn+ j(λ ) ∈ Hλ ⊂ N (if r is small) and N ∩Uδ = /0. Therefore, if
δ ′ < δ/4, then ξn+ j(λ ) /∈U3δ/4 for all λ satisfying |ξn(λ )−μn(λ )| ≤ δ ′′.

We get the following inclusions:

A(λ0;r1,r2)⊃
{

λ ∈ B : ξn+m(λ ) ∈U3δ/4
}⊃ ξ−1

n

({
z ∈ D : f m

λ0
(z) ∈Uδ/2

})
. (21)

Recall that inside the annulus A = A(λ0;r1,r2) we have the bounded distortion of ξn, i.e.

1
C′

(
r1

r2

)K−1

≤
∣∣∣∣ξ ′n(λ1)

ξ ′n(λ2)

∣∣∣∣≤C′
(

r2

r1

)K−1

.

Moreover, if r > 0 is small enough and |λi−λ0|= ri, i = 1,2, then since diam(ξn(B))≤ δ ′,

|ξn(λ2)−μn(λ2)| ≤ 1
1− ε

δ ′,

and, by the choice of r1,
|ξn(λ1)−μn(λ1)| ≥ δ ′′.

Consequently, applying Lemma 12 and (11), we get, like in the proof of Lemma 15

δ ′′

δ ′
≤ 1

1− ε

∣∣∣∣ξn(λ1)−μn(λ1)

ξn(λ2)−μn(λ2)

∣∣∣∣≤ 1+ ε
(1− ε)2

∣∣∣∣∣( f n
λ1
)′(eλ1)x(λ1)

( f n
λ2
)′(eλ2)x(λ2)

∣∣∣∣∣
≤(1+ ε)2

(1− ε)2

∣∣∣∣∣( f n
λ2
)′(eλ2)x(λ1)

( f n
λ2
)′(eλ2)x(λ2)

∣∣∣∣∣= (1+ ε)2

(1− ε)2

∣∣∣∣x(λ1)

x(λ2)

∣∣∣∣≤ (1+ ε)3

(1− ε)3

(
r1

r2

)K

,

and therefore (
r1

r2

)K

≥
(

1− ε
1+ ε

)3 δ ′′

δ ′
.

As a consequence, we obtain uniform bounds on the distortion of ξn on the annulus A

C̃−1 ≤
∣∣∣∣ξ ′n(λ1)

ξ ′n(λ2)

∣∣∣∣≤ C̃ (22)

for all λ1,λ2 ∈ A, where C̃ depends only on δ ′′ and δ ′.

In order to estimate the Lebesgue measure of the set {λ ∈ B(λ0,r2) : ξn+m ∈U3δ/4} for
any radius 0 < r2 ≤ r and appropriate m≤ N, let us denote

E = {z ∈ D : f m
λ0
(z) ∈Uδ/2}
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and fix an arbitrary point z0 ∈ A. By (21), we have ξ−1
n (E)⊂ A, and hence, by (22),

μ(E)≤
∫

ξ−1
n (E)

|ξ ′n(z)|2dμ(z)≤ C̃2|ξ ′n(z0)|2μ(ξ−1
n (E)).

On the other hand, since the degree of ξN is bounded by K on A,

μ(A) =
∫
D

∑
z∈ξ−1

n (w)∩A

|ξ ′n(z)|−2dμ(w)≤ C̃2K|ξ ′n(z0)|−2μ(D).

Therefore, by (20) and since r1/r2 ≤ 0.1 (see Lemma 15), we get the following inequalities

μ(ξ−1
n (E))≥C̃−2|ξ ′n(z0)|−2μ(E)≥ C̃−2|ξ ′n(z0)|−2Cμ(D)

≥CC̃−4

K
μ(A)≥ CC̃−4

K
99

100
μ(B).

Thus, for some q ∈ (0,1), q = q(δ ′,δ ′′,δ ), we have that

μ
(
ξ−1

n (E)
)≥ qμ(B).

By (21), this implies that

μ
({λ ∈ B : ξ j(λ ) ∈U3δ/4 for some j ≥ n})≥ qμ(B).

By (19), if the critical value eλ falls under fλ to U3δ/4, then the parameter λ cannot be in
Mδ , so

μ ({λ ∈ B(λ0,r2) : λ /∈Mδ})≥ qμ(B(λ0,r2)).

Since it holds for an arbitrarily small r2 ≤ r, the Lebesgue density of the set Mδ at λ0 is at
most 1−q < 1. This completes the proof of Theorem 7.

4. PROOF OF LEMMA 4

To finish the proof of Theorem 2 we need to deal with the case when all critical values are
prepoles. First, recall that every Weierstrass elliptic function has a countable family of poles
which are exactly the lattice points. Poles of fλ are given by

p j,k(λ ) = jλ + ke2πi/3λ , j,k ∈ Z

for fλ ∈Wt and by
p j,k(λ ) = jλ + kiλ , j,k ∈ Z

for f ∈Ws. These are obviously analytic functions of λ .
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Suppose now that λ0 is a parameter for which all critical values of fλ0 ∈ Wt ∪Ws are
prepoles, i.e.

f n
λ0
(eλ0) = p j,k(λ0) (23)

for some n ≥ 0. In case of a triangle lattice, eλ0 is any of the three critical values (then
for remaining critical values we have analogous equations multiplied by e2πi/3 and e4πi/3,
respectively), while for a square lattice we take eλ0 �= 0.

Consider the function
g(λ ) = f n

λ (eλ )− p j,k(λ )

in a neighbourhood of λ0, where numbers j,k ∈ Z and n ∈ N are fixed. It is a holomorphic
function of λ for λ close to λ0, and by (23) we have g(λ0) = 0. We have two cases: either
g is an open map and λ0 is its isolated root, or g(λ )≡ 0 locally.

If the second condition holds, for all parameters λ close to λ0, the dynamics of critical
values is the same. To be precise, all critical values of fλ are mapped onto fixed poles after
fixed number of iterates. We can argue exactly like in the proof of transversality (Lemma 9) –
parameter λ0 is postsingularly stable and we can find a conjugacy between fλ and fλ0 defined
on branches of consecutive preimages of critical values. The conjugacy may be extended to
a quasiconformal map on the Julia set J( fλ0), conjugating fλ0 with fλ for all λ close to λ0.
Therefore, there exists an fλ0-invariant line-field on J( fλ0), contrary to [10, Theorem 1.1]
(cf. [4, Theorem 2]). This case cannot happen.

It implies that g is not constant, and hence λ0 is its isolated root. Consequently, there is
no λ close to λ0 for which critical values of fλ are eventually mapped onto these poles after
n iterates (in the case of a square lattice, this does not concern 0, which is always a pole),
hence the set of parameters satisfying (23) is discrete. Since there are only countably many
such equations, we conclude that the set of parameters λ for which all critical values of fλ
are prepoles is countable. This completes the proof of Lemma 4.

Notice that this does not prove that the whole set of parameters for which all critical values
are prepoles is discrete. Moreover, results of Jane Hawkins and her collaborates show that
these parameters accumulate similarly to a family of consecutive prepoles of a meromorphic
function. Still, they form a countable set with the Lebesgue measure zero in C.
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